

B.19 BARDAGE EN PANNEAUX SANDWICHA 2 PAREMENTS ACIER ET AME PUR/PIR EN POSE VERTICALE ET A FIXATIONS TRAVERSANTES

SOMMAIRE			
P.1	En savoir plus		
P.6	Informations complémentaires		
P.21	CE		
P.23	ССТР		
P.33	Référentiel		
P.36	FDES		
P.69	COV/COVT		
P.78	Recyclage		
P.86	Manutention		
P.90	EPAQ		
P.91	Performance Mécanique		
P.100	Performance en Zone Sismique		
P.102	Performance Feu		
P.110	Performance Etanchéité Air/Eau		
P.111	Performance Thermique		

P.136 Performance Acoustique

EN SAVOIR PLUS B19

BARDAGE EN PANNEAUX SANDWICH A 2 PAREMENTS ACIER ET AME PUR/PIR EN POSE VERTICALE ET A FIXATIONS TRAVERSANTES

L'Enveloppe Métallique du Bâtiment

L'Enveloppe Métallique du Bâtiment est une organisation professionnelle créée en 1957. Elle regroupe les fabricants de produits de construction métallique pour le bardage, la couverture et les produits de structure métallique en éléments minces (planchers collaborants, pannes, lisses et solives de plancher).

Adhérents de L'Enveloppe Métallique du Bâtiment producteurs de panneaux sandwich de bardage

Les performances de leur panneaux sont certaines car suivies par des certifications (EPAQ en mécanique, ACERMI/ACERMI/TREMPLIN en thermique, CE niveau 1 en réaction au feu).

Les panneaux sandwich font l'objet du Marquage CE selon la norme NF EN 14509.

Liste des adhérents de L'Enveloppe Métallique du Bâtiment producteurs de panneaux sandwich de bardage à âme polyuréthane.

Technicien: Olivier LEBLANC o.leblanc@arcelormittal.com

Commercial: Bruno GRANNEC bruno.grannec@arcelormittal.com

Technicien: Thibault RENAUX thibault.renaux@joriside.be; Tom POLLET_tom.pollet@joriside.be

Commercial: Dominic VAN DEN BOSSCHE dominic.vandenbossche@joriside.be

Technicien: Alexis BRUTIN alexis.brutin@tatasteel.com

Commercial: Philippe DAGNIAUX philippe.dagniaux@tatasteel.com

Formation L'INSTITUT DE L'ENVELOPPE METALLIQUE

Organisme:

L'INSTITUT DE L'ENVELOPPE est un organisme de formation (6/14 rue la Pérouse 75016 Paris)

Programme:

Les programmes de formation concernant les panneaux sandwich et les Eurocodes sont les suivants

Famille	N°	Formation	Durée (j)
Actions	1	Les actions selon les eurocodes - Détermination des charges permanentes,	2
	2	Les actions selon les eurocodes - Détermination des efforts de vent	2
	3	Maitriser le référentiel de l'envelope acier - panneaux -	2
	4	Le dimensionnement par essais des panneaux aux états limites en pression et formulaire de calcul	2
	5	Le dimensionnement par essais des panneaux aux états limites en dépression et formulaire de calcul	2
Panneaux	ϵ	Résistance des matériaux appliquée aux éléments d'envellope - flexion elastique des panneaux sandwiches - capcité résistante au flambement - elastoplasticité	2
	7	Les panneaux de bardage et couverture - résistance des matériaux appliquée - Initiation à la Note de calcul de panneaux de bardage sur 2 et 3 appuis	2
	8	Le comportement au feu de l'envelloppe acier - les panneaux -	1
	9	Le dimensionnement sismique de l'envellope acier - les panneaux -	1
	10	Les panneaux sandwiches - les nouvelles exigences thermiques - dévelopement durable	1
	11	Calcul RDM des poutres à travées inégales de 2 à 4 appuis avec prise en compte des déformations de flexion et d'effort tranchant	2

Pour suivre une formation à Paris ou dans votre entreprise :

Animateur : David IZABEL d.Izabel@enveloppe-metallique.fr

Programme détaillé des formations, convention, suivi, modalités pratiques: Naima GUENDOUL n.guendoul@enveloppe-metallique.fr

01 40 69 58 90

Sites internet:

<u>BASE INIES</u>: Base nationale française de référence sur les impacts environnementaux et sanitaires des produits, équipements et services pour l'évaluation de la performance des ouvrages.

http://www.base-inies.fr/Inies/Consultation.aspx

<u>Save-construction</u>: outil de calcul en ligne permettant de délivrer des profils environnementaux personnalisés de produits et systèmes de construction en acier

https://www.save-construction.com/

EPAQ: marque de qualité mécanique

http://www.ppa-europe.eu/quality.html

ACERMI/ACERMI tremplin : marque de qualité thermique

http://www.acermi.com/

Recommandations Professionnelles Bardages en panneaux sandwiches à deux parements acier et à âme polyuréthane, Rage 2012 :

http://www.reglesdelart-grenelle-environnement-

<u>2012.fr/fileadmin/redacteurs/Regles_de_l_Art/Recommandations_Pro/Bati/recommandation-pro-rage-bardages-panneaux-sandwich-deux-parements-2014-12.pdf</u>

<u>ConstruirAcier</u>: l'association **ConstruirAcier** a pour objectif de promouvoir l'utilisation de l'acier dans les ouvrages de construction du bâtiment et des travaux publics.

http://www.construiracier.fr/

Bibliographie:

EASIE USER GUIDE EASIE RESEARCH PROGRAMME, collectif, Programme FP7 N° 213302

En Savoir plus le panneau sandwich, collectif SNPPA

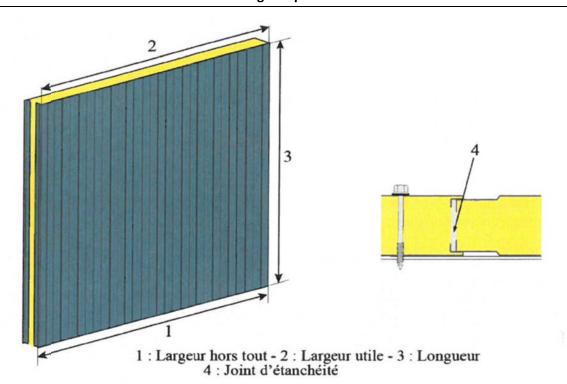
Les cahiers pratiques du SNPPA n°1 Assurances, collectif SNPPA

Les cahiers pratiques du SNPPA n°2 Marquage CE, collectif SNPPA

Les cahiers pratiques du SNPPA n°3 Formulaire de résistance des matériaux, David Izabel, SEBTP, 2007

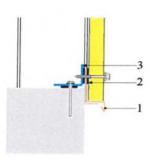
Concevoir et Construire en acier – Marc Landowski, Bertrand Lemoine, Collection Mémentos acier, 2005

Les Profilés Minces en acier, De A à Z, Collectif SNPPA, SEBTP, 2007

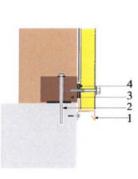

Abécédaire Bâtiment & Sécurité Incendie, collectif SNPPA, FFA, SCMF, OTUA

L'acier pour une construction responsable, collectif, OTUA

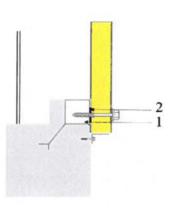
INFORMATIONS B19

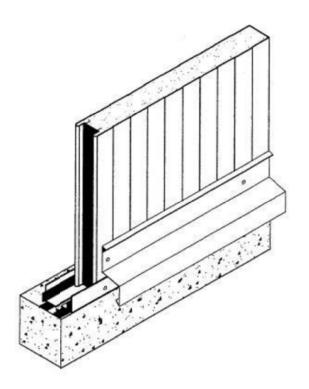

BARDAGE EN PANNEAUX SANDWICH A 2 PAREMENTS ACIER ET AME PUR/PIR EN POSE VERTICALE ET A FIXATIONS TRAVERSANTES

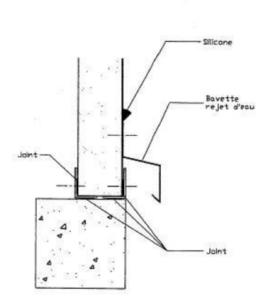
Bardage en partie courante

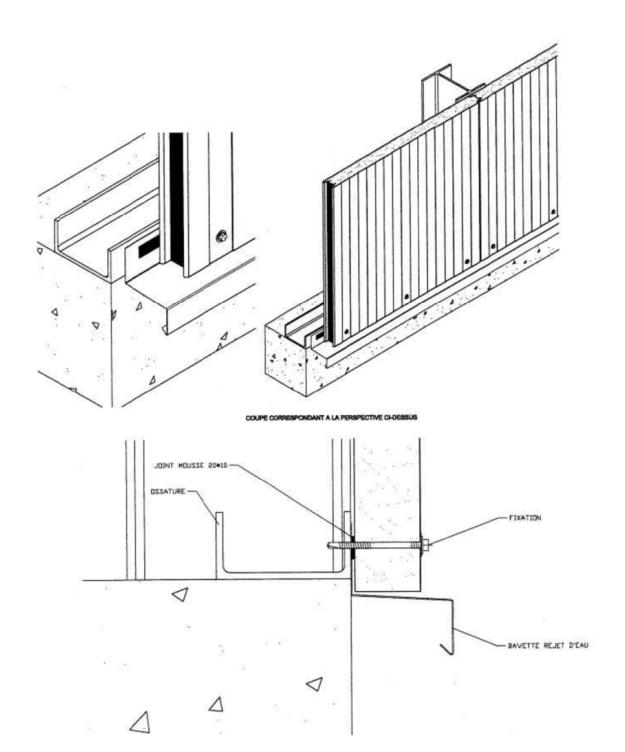

Pied de bardage

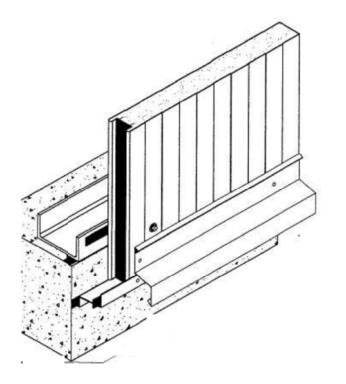
1 : Bavette (facultative) - 2 : Joint d'étanchéité 3 : Ossature métallique

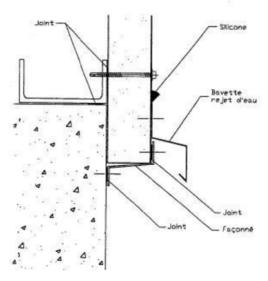


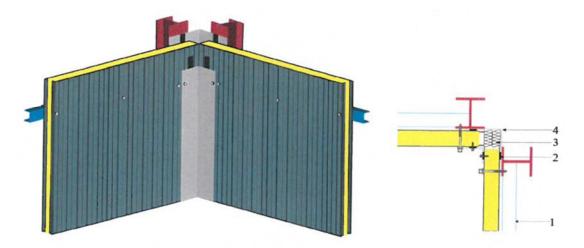

1 : Bavette (facultative) - 2 : Cheville 3 : ossature en bois - 4 : Complément d'étanchéité

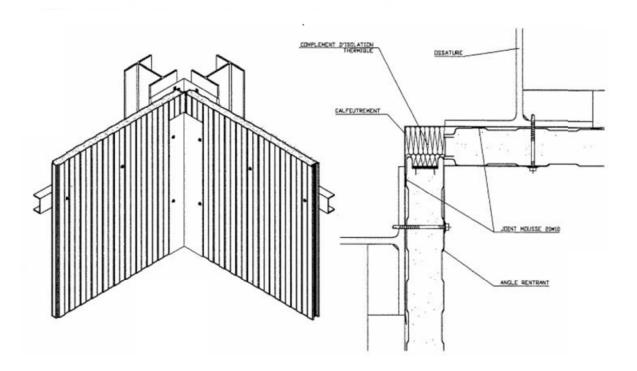

ABL

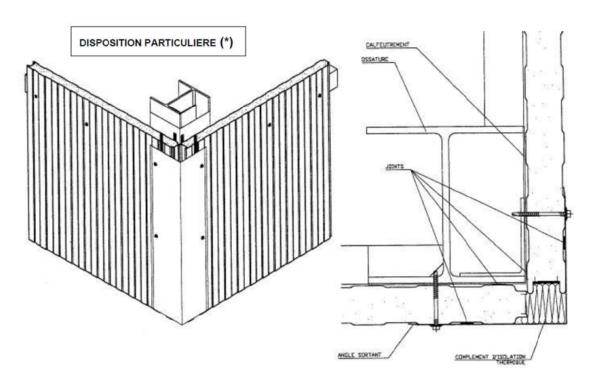




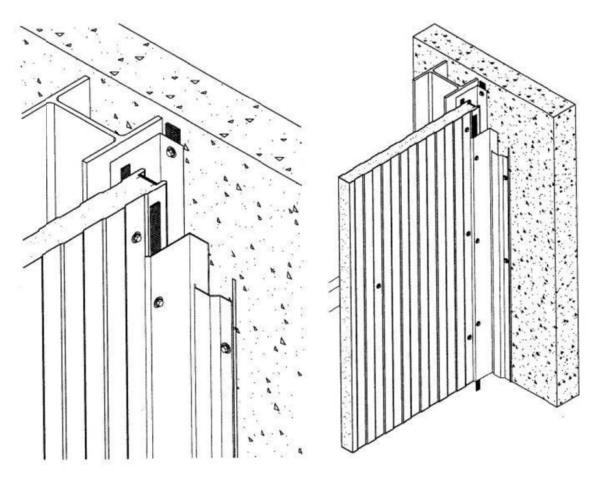

1 : Insert acier - 2 : Joint d'étanchéité

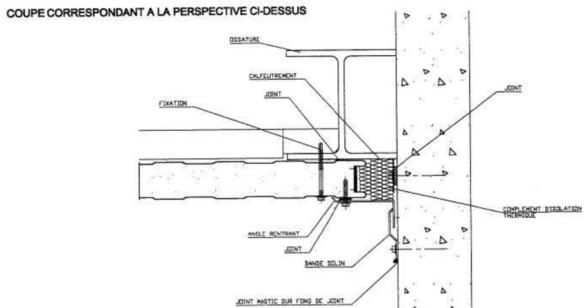




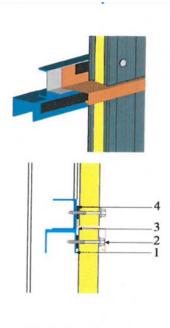

Détail d'angle

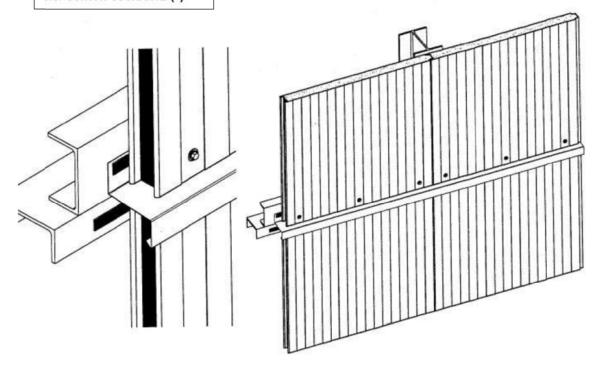
1 : Lisse - 2 : Complément d'étanchéité 3 : Complément d'isolation - 4 : Cornière

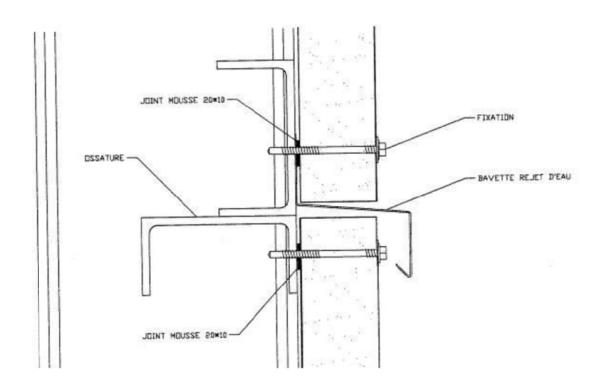


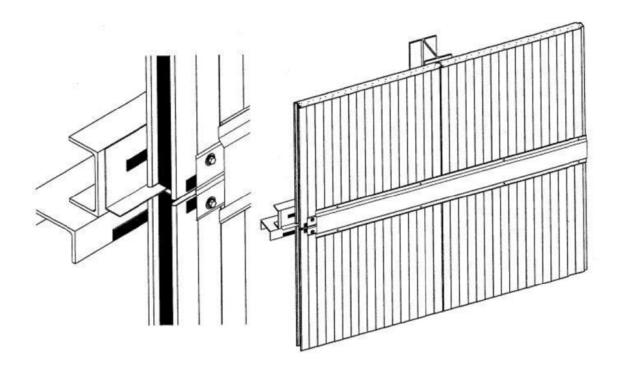

Angle rentrant

Angle sortant

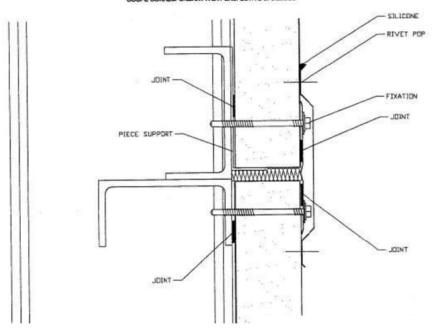

Rive contre mur

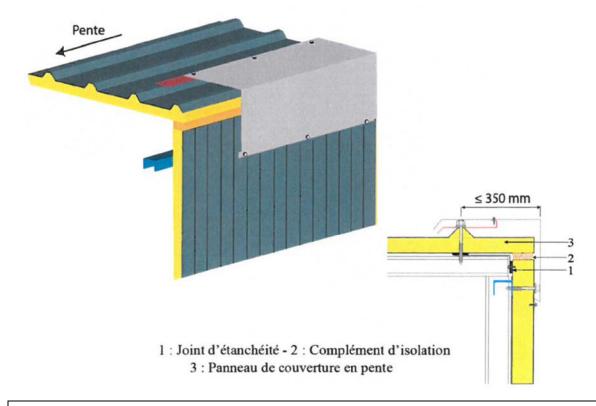

Jonction longitudinale

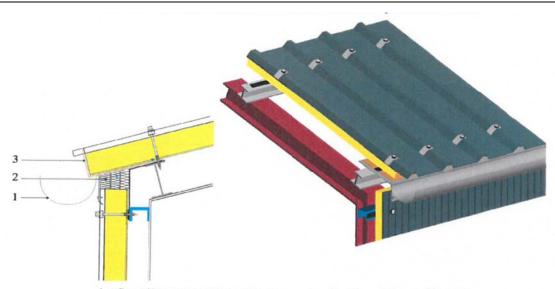




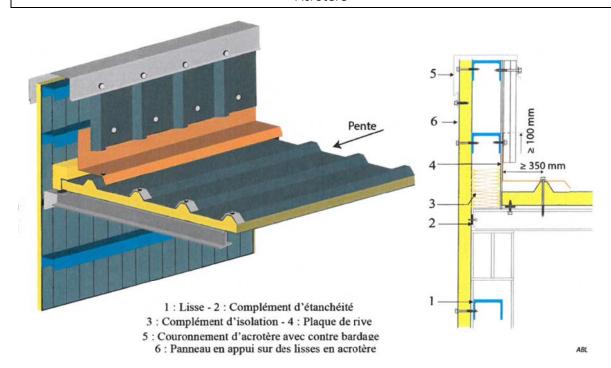
1 : Ossature - 2 : Bavette pente 5% mini 3 : Support - 4 : Complément d'étanchéité

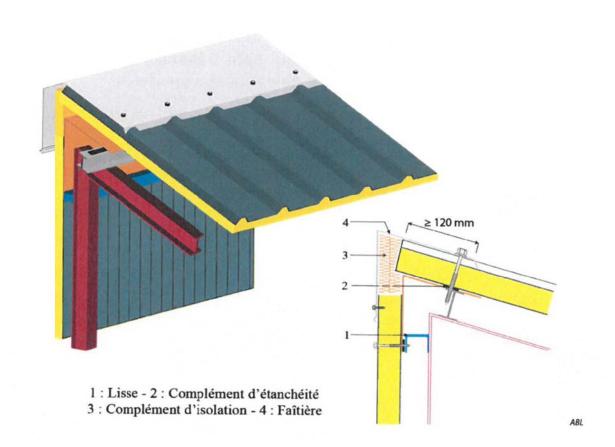

DISPOSITION COURANTE (*)

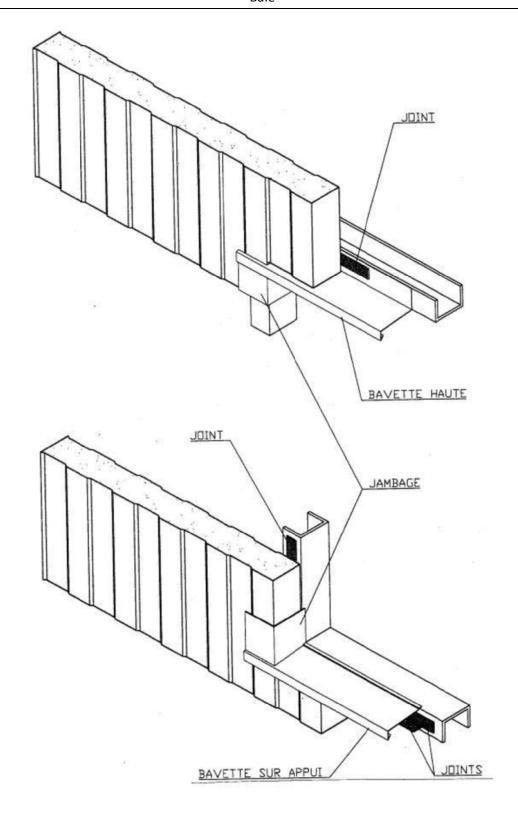



COUPE CORRESPONDANT A LA PERSPECTIVE CI-DESSUS

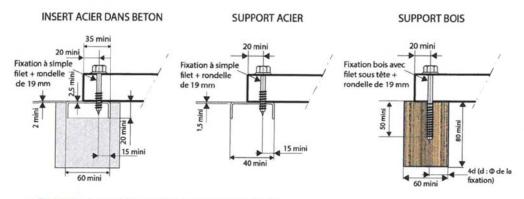
Rive de bardage

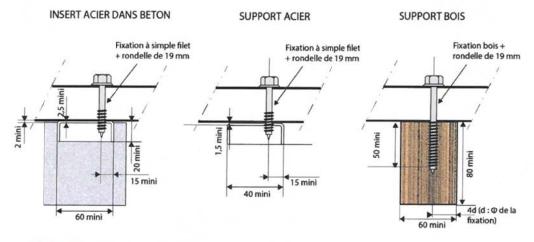

Egouts


 $1: Gouttière \ supportée par la charpente - 2 : Complément d'isolation <math display="block">3: Closoir$

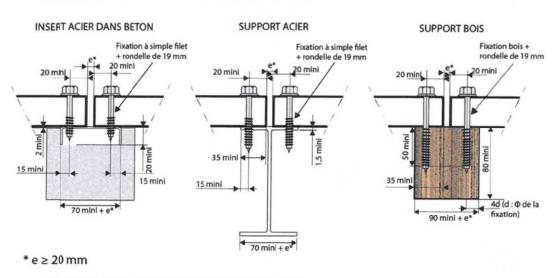

ABL

Acrotère


Faitage simple



6.5.2. • Conditions d'appui minimum


On respectera la pince minimale entre la fixation et le bord de l'appui (15 mm, ou 4d selon le type d'appui),

▲ Figure 8a : Appuis d'extrémités de panneaux sandwich

▲ Figure 8b : Appuis intermédiaires de panneaux sandwich

▲ Figure 8c : Jonction bout à bout de panneaux sandwich

Exemple d'Etiquette CE (Ex NF EN 14509)

01234

Société X S.A, BP 21, F-1050 XYZ Co

13

01234-DPC-00234

EN 14509:2013

Panneaux isolants à parements métalliques pour utilisation dans des bâtiments

Référence : XX1000.

Isolation: Masse volumique du PUR: 35 kg/m3

Épaisseur : 80 mm. Poids : 12 kg/m². Parements :

Extérieur : Acier 0,5 mm S 320GD (EN 10346).

Revêtement : PVC/100 µm.

Intérieur : Acier 0,4 mm S 320GD (EN 10346).

Revêtement : SP/12 µm.

Usage: Bardage

Coefficient de transmission thermique : 0,25 W/m²K
Conductivité thermique : 0,020 W/m·K

Résistance mécanique :

Résistance en traction 0,12 MPa Résistance au cisaillement 0,10 MPa

Résistance réduite au cisaillement après

application d'une charge à long terme 0,080 MPa

Module d'élasticité en cisaillement (âme) 3,0 MPa

Résistance à la compression (âme) 0,14 MPa

Résistance à la flexion dans la portée (portée soumise à essai 1,8 m)

- Flexion positive 3,70 kNm/m - Flexion positive, température élevée 3,50 kNm/m Marquage de conformité CE, comprenant le symbole « CE » donné dans la Directive 93/68/CEE.

Numéro d'identification de l'organisme de certification (le cas échéant)

Nom ou marque d'identification et adresse déclarée du fabricant Nom et adresse officielle du fournisseur (si différent du fabricant) Deux derniers chiffres de l'année d'apposition du marquage

N° de la Norme Européenne avec la date de révision Description du produit

Numéro de certificat (le cas échéant)

eŧ

Pour les parements métalliques normalisés, la nuance d'acier doit être déclarée.

Pour les caractéristiques de contrainte de limite élastique des aciers non normalisés, la résistance ultime et l'allongement doivent être déclarés à la suite d'essais.

Utilisation finale

Informations sur les caractéristiques réglementées

Fluage: applications en couverture seulement

La résistance au plissement ou la résistance à la flexion doit être déclarée. - Flexion négative 2,90 kNm/m - Flexion négative, température élevée 2,75 kNm/m

Résistance à la flexion au droit d'un support intérieur

- Flexion positive 2,60 kNm/m
- Flexion positive, température élevée 2,50 kNm/m
- Flexion négative 3,00 kNm/m

- Flexion négative, température élevée 2,80 kNm/m

Résistance au plissement (parement extérieur)

- dans une portée

- dans une portée, température élevée 95 MPa - au droit d'un appui central 80 MPa

100 MPa

- au droit d'un appui central, température élevée 75 MPa

Résistance au plissement (parement intérieur)

- dans une portée 100 MPa - au droit d'un appui intérieur 90 MPa

Réaction au feu : B-s2, d0 (avec détails des couvreioints en acier)

Perméabilité à l'eau : Classe C

Perméabilité à l'air : n = 0,9 : C = 0,001

Perméabilité à la vapeur d'eau : Imperméable

Isolation au bruit aérien : Rw (C:Ctr)

Durabilité : Réussite - couleurs claires : Réflectivité 40-

90

Résistance au feu – Le classement doit <u>être accompagné</u> <u>des conditions éventuelles de montage et de fixation</u>. Si nécessaire, indiquer la charge pertinente utilisée ainsi que les éventuelles autres restrictions sur l'application directe à partir de l'essai

Comportement au feu extérieur. Classifications des états et pente(s) auxquels des essais ont été effectués ou B_{ROOF} si CWFT

Classement ou NPD

Valeurs ou NPD

Classement ou NPD

Charge et portée soumise à essai ou NPD

Valeurs / réussite ou NPD ;

Déclaration des couleurs/réflectivité si essai de durabilité DUR1

CCTP DES PANNEAUX SANDWICH DE BARDAGE EN POLYURETHANE: Extraits des

Recommandations Professionnelles Bardages en panneaux sandwich à deux parements en acier et à âme polyuréthane, Rage 2012

B19, B20, B23, B24

ANNEXE L - MÉMENTO POUR LA RÉDACTION DU DOSSIER DE CONSULTATION ET L'ÉTABLISSEMENT DU MARCHÉ

Le dossier de consultation et les Documents Particuliers du Marché doivent comprendre notamment :

- la désignation des surfaces à traiter et la hauteur de l'ouvrage;
- le plan général de bardage avec les indications suivantes :
 - inclinaison éventuelle de la façade vers l'extérieur du bâtiment,
 - implantation des ouvrages particuliers: angles, bas de bardage, haut de bardage, solin contre mur, joints de dilatation, aérateurs, descente d'eaux pluviales, pénétrations diverses (conduits de ventilation, crosses pour canalisations électriques, supports d'équipements lourds), etc.;
- la destination du local, l'ambiance intérieure, l'atmosphère extérieure, la classe d'hygrométrie, W/n, la pression de vapeur.
- la prise en compte ou non du gradient thermique. Dans le cas de prise en compte, indication des températures intérieures et extérieures;
- les dimensions géométriques du bâtiment ;
- la nature de l'ossature et les caractéristiques dimensionnelles des appuis des panneaux sandwich;
- les données concernant le vent selon soit les NV 65 modifiées 2009 soit selon la NF EN 1991-1-4 et son annexe nationale; les DPM doivent indiquer quel référentiel est retenu (vent NV 65 modifiées 2009 ou NF EN 1991-1-4);
- la zone de vent, le site, l'orographie et l'altitude;
 - NV65 (zone de vent, site, bâtiment ouvert ou fermé);
 - Eurocode vent (rugosité, orographie, altitude nécessaire pour l'orographie, cas particulier);
- les données sismiques (zones, catégories d'importance de bâtiment, classe de sol).
- les coefficients de transmission thermique surfacique en partie courante de la façade U_p, la résistance thermique ou le type et l'épaisseur de l'isolant;
- les performances d'isolement acoustiques requises ;
- · les raccordements éventuels à d'autres constructions ;
- les précautions particulières éventuelles concernant les stockages et la manutention des charges;
- l'implantation des appuis, leurs largeurs et épaisseurs sur tout le bâtiment y compris au droit des ouvrages particuliers, et dans les zones où il y a majoration de la charge de vent;

- l'obligation éventuelle de continuité de l'isolation thermique et du pare-vapeur entre le bardage et la couverture ;
- les dispositifs éventuels de calfeutrement à l'air ;
- la conception et la nature des ouvrages particuliers tels que, contre-bardage, bande de rive (description ou coupes);
- l'exigence éventuelle d'une épreuve d'étanchéité à l'air ;
- les dispositifs permanents de fixation ou d'ancrage des équipements de sécurité collective ou individuelle contre les chutes de hauteur (non fixés aux panneaux).

ANNEXE O – CONDITIONS DE RÉCEPTION APPLICABLES AUX FOURNITURES DE PANNEAUX SANDWICH DE BARDAGE À ÂME POLYURÉTHANE (PUR/PIR), À 2 PAREMENTS EN ACIER ET À FIXATIONS TRAVERSANTES

O.1. Généralités

La présente annexe décrit les conditions de réception des panneaux sandwich de bardage qui s'appliquent lorsque les Document Particulier du Marché l'exigent.

Note

Ces conditions de réception n'ont pas d'utilité pratique pour les panneaux sandwich bénéficiant de la marque de qualité – EPAQ (niveau 1) pour les performances mécaniques, ACERMI ou ACERMI Tremplin pour les performances thermiques et bénéficiant d'un niveau d'EVCP 1 pour les performances de réaction au feu au sens du règlement produit de construction.

O.2. Objet de la réception

L'objet de la réception est de vérifier la conformité des panneaux sandwich de bardage avec les spécifications de la NF EN 14509 et de son complément national XP P34-900/CN complétées par les présentes Recommandations Professionnelles (cf. 1.2) (marque de qualité/suivi des essais par une tierce partie indépendante).

O.2.1. Caractéristiques contrôlées

La réception porte sur :

- la performance mécanique des panneaux (cf. Tableau O.1);
- la performance thermique des panneaux (cf. Tableau O.1);
- la performance en réaction au feu des panneaux (cf. Tableau O.1);
- la durabilité des produits (cf. Tableau O.1);
- les caractéristiques géométriques (cf. Tableau O.3);
- le marquage des produits (cf. Tableau O.1).

O.2.2. Date et lieu de réception

La réception est effectuée au moment de la prise en charge des produits par l'acquéreur, c'est-à-dire, soit chez l'acquéreur, soit chez le fournisseur, soit sur le lieu de livraison (chantier).

Quel que soit le lieu de réception, la date est fixée d'un commun accord, les parties sont présentes ou représentées.

Sauf convention expresse, la réception ne peut être effectuée sur le lieu de livraison, ou chez l'acquéreur, que si le transport est à la charge du fournisseur.

O.2.3. Choix de l'organisme chargé de la réception du lot et du laboratoire d'essais

La réception du lot de produits doit être réalisée par un organisme reconnu et indépendant, qui doit être soit un organisme notifié, soit un organisme d'inspection conforme à la NF EN ISO/CEI 17020.

L'organisme intervient pour la réception du lot et pour la conformité du lot en fonction des résultats d'essais.

Les essais sont effectués dans un laboratoire conforme à la norme NF EN ISO/CEI 17025.

Note 1

Cette exigence est remplie en cas de laboratoire accrédité par le COFRAC et disposant d'expertises dans le domaine de l'acier, pour ces essais.

Note 2

L'attention des acquéreurs est attirée sur le fait que l'exécution des essais de laboratoire destinés à vérifier la conformité des panneaux sandwich de bardage aux spécifications de la norme NF EN 14509 et au complément national XP P34-900/CN et les présentes Recommandations nécessite un délai minimal de dix semaines.

O.2.4. Frais de réception

Les frais de contrôles et d'essais sont à la charge du fournisseur.

O.3. Echantillonnage

O.3.1. Identification du lot

Vérifier que son indiqués sur les colis :

- Le nom du procédé de bardage en panneaux sandwich.
- Le nom du fabricant.
- Le lieu de l'usine de production des panneaux sandwich.

S'assurer que le lot de panneaux à contrôler est constitué d'un ensemble de produits provenant de la même usine et ayant été fabriqués suivant la même composition et selon la même méthode de production. Dans le cas contraire, chaque fabrication doit être contrôlée séparément.

O.3.2. Lots de contrôle

Dans chaque lot à réceptionner, le nombre de produits à sélectionner au hasard dépend de la taille du lot à contrôler. Les lots d'inspection minimaux et maximaux devront être les suivants :

- Panneaux de bardage : minimum 3 et maximum 10 panneaux par lot;
- Les lots plus importants sont à subdiviser en lots d'inspection de la taille ci-dessus.

196

O.4. Méthodes d'essais

O.4.1. Préparation des éprouvettes pour la vérification des performances mécaniques

Le nombre et les dimensions des éprouvettes à préparer sont précisés dans le Tableau O.1.

Pour les panneaux :

- la norme NF EN 14509 (annexes essais A, B, C) pour les caractéristiques générales, ou
- la norme NFP 34 503 pour les performances mécaniques grandeurs.

Pour les assemblages :

- interaction sur appuis en dépression Essai A7 de la norme NF EN 14509, ou
- la norme NF P 34 503 pour les performances mécaniques grandeurs,
- l'[Annexe I] des présentes Recommandations Professionnelles.

Caractéristiques	Exigences selon NF EN 14509	Essai d'évaluation / Type d'essai / Epaisseur du panneau soumis à l'essai			Nombre d'échan- tillons
Marquage	Annexe ZA de la NF EN 14509	-	-	-	Chaque colis
Caractéristiques mécaniques d'un parement	5.1.2 de la NF EN 14509	EN 10002-1 EN ISO 6892-1	Traction lon- gitudinale	Chaque parement du panneau considéré	3
Epaisseur des pare- ments	5.2.5 de la NF EN 14509	Palmer	Mesure d'épaisseur (Palmer)	Chaque parement du panneau considéré	3
Revêtement des parements	5.1.2.1 et 5.1.2.2 de la NF EN 14509	EN 10346 EN 10169+A1		Chaque parement du panneau considéré	3
Caractéristiques techniques d'un pan- neau et du matériau d'âme correspon- dante	5.2.1 de la NF EN 14509	EN 1602 EN 13165	Visuel Masse volu- mique Gaz occlus Essai néces- saire pour les panneaux livrés	Epaisseurs de pan- neaux livrés	3
Résistance au cisail- lement et module de cisaillement	5.2.1.2 de la NF EN 14509	A. 3 ou A. 4 de la NF EN 14509	Essai néces- saire pour les panneaux livrés	Epaisseurs de pan- neaux livrés	3
Résistance à la compression et module d'élasticité en compression	5.2.1.4 de la NF EN 14509	A. 2 de la NF EN 14509	Essai néces- saire pour les panneaux livrés	Epaisseurs de pan- neaux livrés	6

Caractéristiques	Exigences selon NF EN 14509	Essai d'évaluation / Type d'essai / Epaisseur du panneau soumis à l'essai			Nombre d'échan- tillons
Résistance en traction perpendicu- laire au panneau : et module d'élasticité en traction	5.2.1.6 de la NF EN 14509	A. 1 de la NF EN 14509	Essai néces- saire pour les panneaux livrés	Epaisseurs de pan- neaux livrés	3
Résistance en traction perpendiculaire au panneau à des températures élevées (f _{ct})	5.2.1.6 de la NF EN 14509	A. 1.6 de la NF EN 14509	Essai néces- saire pour les panneaux livrés	Epaisseurs de pan- neaux livrés	1
Moment résistant et contrainte de plisse- ment en travée	5.2.1.7 de la NF EN 14509	A. 5 de la NF EN 14509 Ou NFP 34503 et tableau X.3	Essai néces- saire pour les panneaux livrés	Epaisseurs de pan- neaux livrés	3
Moment résistant et contrainte de plis- sement sur un appui central	5.2.1.8 de la NF EN 14509	A. 7 de la NF EN 14509 Ou NF P 34503 et tableau X.3	Essai néces- saire pour les panneaux livrés	Epaisseurs de pan- neaux livrés	3
Masse volumique	A. 8 de la NF EN 14509	A. 8 de la NF EN 14509	Essai néces- saire pour les panneaux livrés	Epaisseurs de pan- neaux livrés	3
Conductivité ther- mique	5.2.2 de la NF EN 14509	A. 10 de la NF EN 14509	Essai néces- saire pour les panneaux livrés	Epaisseurs de pan- neaux livrés	Voir A. 10
Durabilité	5.2.3 de la NF EN 14509	Annexe B de la NF EN 14509	Essai néces- saire pour les panneaux livrés	Epaisseurs de pan- neaux livrés	-
Réaction au feu	5.2.4.1	EN ISO 1716, EN ISO 1182	Essai néces- saire pour les panneaux livrés	Epaisseurs de pan- neaux livrés	Spécifié dans l'EN 13501-1
neaction an len	de la NF EN 14509	EN 13823 (OIF) EN ISO 11925-2	Essai néces- saire pour les panneaux livrés	Epaisseurs de pan- neaux livrés	3
Tolérances dimensionnelles (toutes)	5.2.5 de la NF EN 14509	Annexe D de la NF EN 14509	Essai néces- saire pour les panneaux livrés	Voir Tableau M.3	3 panneaux toutes à vérifier

▲ Tableau O.1 : Caractéristiques, exigences, essais et nombre d'échantillons

O.4.2. Expression des résultats

Exprimer les résultats d'essais selon :

- la NF EN 14509 pour les caractéristiques générales ;
- les présentes recommandations pour toutes les autres caractéristiques

O.4.3. Evaluation des résultats

Réaliser l'évaluation des résultats à partir des caractéristiques et des critères de conformité correspondants fixés dans le tableau O.2.

Caractéristiques Selon la NF EN	Méthode d'évalua- tion Selon NF EN	Critères de conformité et conditions spécifiques minimales requises lors
14509	14509 et présentes recommandations	de la livraison du produit
Marquage	Annexe ZA de la NF EN 14509	Pas de défaut
5.1.2 de la NF EN 14509 – Caractéristiques mécaniques d'un pare- ment	EN 10002-1 EN ISO 6892-1	$f_y \ge 250$ MPa et supérieure à f_y déclarée sur la limite d'élasticité. La nuance d'acier indiquée sur les produits ou le colis doit être conforme aux présentes recommandations (§5.2)
Epaisseur des pare- ments	Palmer	Pour chaque parement : t _{nominal} déclarée indiquée sur les produits ou le colis ≥ à la valeur minimale donnée au §5.2 des présentes recommandations. Mesure des épaisseurs de parements obligatoire dans tous les cas (en enlevant le revêtement organique).
Revêtements des pare- ments	EN 10346 EN 10169 A1	Pour chaque parement : L'épaisseur du revêtement (métallique et organique) déclarée ≥ à la valeur minimale donnée au §5.2 des présentes recommanda- tions et supérieure à la valeur déclarée.
Caractéristiques tech- niques d'un panneau et du matériau d'âme correspondante	EN 1602 EN 13165	Nature de l'Isolant indiquée sur les produits ou le colis : polyuréthane PUR/PIR obligatoire. Densité minimale de l'isolant déclarée sur les produits ou le colis ≥ 35 kg/m³ et supérieure à la valeur déclarée tolérance comprise. Gaz d'expansion N pentane ou HFC 245 fa ou HFC 36/245 Si aucune indication dans la documentation commerciale test obligatoire.
5.2.1.2 de la NF EN 14509 – Résistance au cisaillement et module de cisaillement	A. 3 ou A. 4 de la NF EN 14509	$G_{_{\mathbb{C}}}$ déclarée sur les produits ou le colis \geq à la valeur minimale de 2 MPa et supérieur à la valeur déclarée. $f_{_{\mathbb{C}^{\!$
5.2.1.4 de la NF EN 14509 – Résistance à la compression et module d'élasticité en compres- sion	A. 2 de la NF EN 14509	$E_{cc} \ge$ supérieure à la valeur exigée pour le calcul. $f_{cc} \ge f_{cc}$ déclarée sur les produits ou le colis \ge 0,07 MPa et supérieure à la valeur déclarée.
5.2.1.6 de la NF EN 14509 – Résistance en traction perpendiculaire au panneau : (et module d'élasticité en traction b)	A. 1 de la NF EN 14509	$E_{\text{Ct}} \geq \text{sup\'erieure}$ à la valeur exigée pour le calcul. f_{Ct} déclaré sur l'étiquette sur les produits ou le colis $\geq 0,05$ MPa et supérieur à la valeur déclarée
5.2.1.6 de la NF EN 14509 – Résistance en traction perpendiculaire au panneau à des tem- pératures élevées f _{ct})	A. 1.6 de la NF EN 14509	$E_{Ct} \ge supérieure à la valeur exigée pour le calcul et f_{Ct} supérieure à la valeur déclarée.$

Caractéristiques Selon la NF EN 14509	Méthode d'évaluation Selon NF EN 14509 et présentes recommandations	Critères de conformité et conditions spécifiques minimales requises lors de la livraison du produit		
5.2.1.7 de la NF EN 14509 – Moment résis- tant et contrainte de plissement en travée	A. 5 de la NF EN 14509 Ou NFP 34503	M _u travée supérieur à la valeur déclarée. σ _w travée supérieure à la valeur déclarée. Le moment résistant déclaré sur les produits ou le colis doit être supérieur au moment agissant propre à l'ouvrage de destination concerné (approche NF EN 14509, XP P34-900/CN et cahier CSTB 3731). La contrainte de plissement déclarée sur les produits ou le colis sur l'étiquette CE/DdP doi être supérieure à la contrainte de plissement propre à l'ouvrage de destination concerné (approche NF EN 14509).		
5.2.1.8 de la NF EN 14509 – Moment résis- tant et contrainte de plissement sur un appui central	A. 7 de la NF EN 14509 Ou NFP 34503	M _u sur appui central supérieur à la valeur déclarée. σ _w sur appui central supérieure à la valeur déclarée. Le moment résistant déclaré sur les produits ou le colis doit être supérieur au moment agissant propre à l'ouvrage de destination concerné (approche NF EN 14509 et XP P34-900/CN cahier CSTB 3731). La contrainte de plissement déclarée sur les produits ou le colis sur l'étiquette CE/DdP doit être supérieure à la contrainte de plissement propre à l'ouvrage de destination concerné (approche NF EN 14509). Par ailleurs, l'assemblage correspondant à cette performance sera conforme aux présentes recommandations.		
5.2.2 de la NF EN 14509 – Conductivité ther- mique	A. 10 de la NF EN 14509 et de la norme EN 12667	Valeur déclarée sur les produits ou le colis \leq 0.032 W/(m.K) et inférieure à la valeur déclarée vieillis (selon C.4.2 de la NF EN 13165). Valeur $U_{d's}$ déclarée sur les produits ou le colis \leq à la valeur déclarée.		
5.2.3 de la NF EN 14509 – Durabilité	Annexe B de la NF EN 14509	=>Réussite exigée (voir 5.2.3 et Annexe B de la NF EN 14509).		
5.2.4.1 de la NF EN 14509 – Réaction au feu	EN ISO 1716, EN ISO 1182 EN 13823 (OIF) EN ISO 11925-2	Classement conformé- ment à la EN 13501-1 Doit être conforme aux exi- gences requises sur l'ouvrage de destination		
5.2.5 de la NF EN 14509 – Tolérances dimen- sionnelles (toutes)	Annexe D de la NF EN 14509	Pas de défaut (cf. Tableau 0.3)		

▲ Tableau 0.2 : Caractéristiques, méthode d'évaluation et critères de conformité

ENVIRONS AND THE PROPERTY OF T

Les tolérances dimensionnelles sont données dans le tableau ci-dessous.

Dimension	Tolérance (maximale admissible)	Méthode de mesurage			
Épaisseur du panneau*	D ≤ 100 mm ± 2 mm D > 100 mm ± 2 %	NF EN 14509 – D. 2.1			
Défaut de planéité (en fonction de la longueur mesurée L)	Pour $L = 200 \text{ mm} - \text{Défaut de planéité } 0.6 \text{ mm}$ Pour $L = 400 \text{ mm} - \text{Défaut de planéité } 1.0 \text{ mm}$ Pour $L > 700 \text{ mm} - \text{Défaut de planéité } 1.5 \text{ mm}$	NF EN 14509 – D. 2.2			
Hauteur du profilé métal- lique (nervures) (en mm)	5 < h ≤ 50 mm ± 1 mm 50 < h ≤ 100 mm ± 2.5 mm	NF EN 14509 – D. 2.3			
Hauteur des raidisseurs principaux et secondaires	$d_s \le 1 \text{ mm} \pm 30 \% \text{ de } d_s$ $1 \text{ mm} < d_s \le 3 \text{ mm} \pm 0.3 \text{ mm}$ $3 \text{ mm} < d_s \le 5 \text{ mm} \pm 10 \% \text{ de } d_s$	NF EN 14509 – D. 2.4			
Longueur du panneau	$L \le 3 \text{ m} \pm 5 \text{ mm}$ $L > 3 \text{ m} \pm 10 \text{ mm}$	NF EN 14509 – D. 2.5			
Largeur utile du panneau	w ± 2 mm	NF EN 14509 – D. 2.6			
Défaut d'équerrage	0.006 x w (largeur utile nominale)	NF EN 14509 – D. 2.7			
Défaut de rectitude (sur la longueur)	1 mm par mètre, maximum 5 mm	NF EN 14509 – D. 2.8			
Cambrure	2 mm par mètre de longueur, maximum 20 mm 8.5 mm par mètre de largeur pour les profils plats ou faiblement nervurés — $h \le 10$ mm 10 mm par mètre de largeur pour les profils — $h > 10$ mm	NF EN 14509 – D. 2.9			
Pas du profil (p)	If $h \le 50 \text{ mm } p : \pm 2 \text{ mm}$ If $h > 50 \text{ mm } p : \pm 3 \text{ mm}$	NF EN 14509 – D. 2.10			
Largeur des nervures (b_1) et Largeur des vallées (b_2)	Pour $b_1 \pm 1$ mm Pour $b_2 \pm 2$ mm	NF EN 14509 – D. 2.10			
* Pour le calcul de l'épaisseur de panneaux avec parements profilés, voir la Figure D. 1 de la NF EN					

^{*} Pour le calcul de l'épaisseur de panneaux avec parements profilés, voir la Figure D. 1 de la NF EN 14509

▲ Tableau O.3: Tolérances dimensionnelles des panneaux

La méthode d'évaluation est, selon la norme ISO 390, soit :

- par attribut, échantillonnage double, régime normal,
- ou par mesure avec écart-type inconnu, régime normal,
- ou encore par la méthode décrite dans les normes de référence.

O.5. Rapport de contrôle

Le rapport de contrôle d'un lot de produits et d'accessoires doit contenir les informations suivantes :

- la date et le lieu de l'échantillonnage et les personnes présentes lors de l'échantillonnage ;
- la taille du lot contrôlé;
- le marquage des produits de l'échantillon par le représentant de l'organisme chargé des réceptions;

- la description de chaque lot contrôlé (au moins l'usine de production, le nom du profil, la catégorie et la classe, le ou les format(s);
- les résultats d'essais pour chaque lot contrôlé selon le paragraphe 0.4.2;
- la décision sur la conformité du lot contrôlé avec les exigences selon le paragraphe 0.4.3.

REFERENTIEL DES PANNEAUX SANDWICH DE BARDAGE EN POLYURETHANE

B19, B20, B23, B24

ISSN 0335-3931

norme française

NF EN 14509 16 Novembre 2013

Indice de classement : P 34-900

ICS: 91.100.60

Panneaux sandwiches autoportants, isolants, double peau à parements métalliques — Produits manufacturés — Spécifications

- E : Self-supporting double skin metal faced insulating panels Factory made products — Specifications
- D : Selbsttragende Sandwich-Elemente mit beidseitigen Metalldeckschichten Werkmäßig hergestellte Produkte — Spezifikationen

Norme française homologuée

par décision du Directeur Général d'AFNOR

Remplace la norme homologuée NF EN 14509, de janvier 2007 qui reste en vigueur jusqu'en octobre 2014.

Correspondance La Norme européenne EN 14509:2013 a le statut d'une norme française.

Résumé

Le présent document spécifie les exigences applicables aux panneaux sandwiches manufacturés, autoportants, isolants, à deux parements métalliques, utilisés pour la pose en discontinu dans les cas suivants : couvertures et bardages ; parois extérieures et bardages de parois ; parois (y compris cloisons) et plafonds dans l'enveloppe du bâtiment. Les matériaux d'âme isolante couverts par le présent document sont : le polyuréthane rigide (PUR et PIR), le polystyrène expansé, la mousse de polystyrène extrudé, la mousse phénolique, le verre cellulaire et la laine minérale.

Il inclut les panneaux dont les chants sont en matériaux autres que le matériau d'âme isolant principal. Il inclut également les panneaux utilisés dans des applications pour chambres

Le présent document ne couvre pas les panneaux sandwiches dont la conductivité thermique déclarée de l'âme isolante est supérieure à 0,06 W/m.K à 10 °C ; les produits comportant deux ou plusieurs couches clairement définies de différents matériaux d'âme isolante (multicouches) ; les panneaux à parement(s) perforé(s) et les panneaux incurvés.

Descripteurs

Thésaurus International Technique: couverture de bâtiment, panneau de construction, parement, métal, panneau isolant, isolation thermique, produit isolant thermique, polystyrène, spécification, résistance mécanique, dimension, tolérance de dimension, épaisseur, résistance thermique, résistance au feu, étanchéité à l'eau, perméabilité à l'air, isolation acoustique, durabilité, charge, essai, essai de conformité, classification, désignation, marquage.

Modifications Corrections

Par rapport au document remplacé, révision de la norme.

Éditée et diffusée par l'Association Française de Normalisation (AFNOR) — 11, rue Francis de Pressensé — 93571 La Plaine Saint-Denis Cedex Tél. : + 33 (0)1 41 62 80 00 — Fax : + 33 (0)1 49 17 90 00 — www.afnor.org

Norme expérimentale

Novembre 2014

1er tirage : -

XP P34-900/CN P34-900/CN

www.afnor.org

Panneaux sandwiches autoportants, isolants, double peau à parements métalliques - Produits manufacturés - Complément national à la NF EN 14509:2013

DOCUMENT PROTÉGÉ PAR LE DROIT D'AUTEUR

Droits de reproduction réservés. Sauf prescription différente, aucune partie de cette publication ne peut être reproduite ri utilisée sous quelque forme que ce soit et par aucun procédé, électronique cu mécanique, y compris la photocopie et les microfilms, sans accord formel.

Contacter :
AFNOR – Norm'Info
11, rue Francis de Pressensé
93571 La Plaine Saint-Denis Cedex
Tél : 01 41 62 76 44
Fax : 01 49 17 92 02
E-mail : norminfo@afnor.org

Imprimé par AFNOR le 17 Novembre 2014

avec l'autorisation de l'Editeur

« Règles de l'Art Grenelle Environnement 2012 »

www.reglesdelart-grenelle-environnement-2012.fr

RECOMMANDATIONS PROPRISSION NINEAUX **BARDAGES EN PANNEAUX SANDWICH À DEUX PAREMENTS EN ACIER** ET À ÂME POLYURÉTHANE

CONCEPTION ET MISE EN ŒUVRE

DÉCEMBRE 2014

NEUF-RENOVATION

DECLARATION

ENVIRONNEMENTALE et SANITAIRE

CONFORME A LA NORME NF P 01-010

Panneau sandwich de bardage à âme polyuréthanne et à deux parements acier

Janvier 2010

Cette déclaration est présentée selon le modèle de Fiche de Déclaration Environnementale et Sanitaire validé par l'AIMCC (FDE&S Version 2005)

PLAN

INTRO	DDUCTION 3
GUIDE	E DE LECTURE 4
1 CA	ARACTERISATION DU PRODUIT SELON NF P 01-010 § 4.3 3
1.1	Définition de l'Unité Fonctionnelle (UF)3
1.2	Masses et données de base pour le calcul de l'unité fonctionnelle (UF) 3
1.3 ľuni	Caractéristiques techniques utiles non contenues dans la définition de ité fonctionnelle3
ET C	ONNEES D'INVENTAIRE ET AUTRES DONNEES SELON NF P 01-010 § 5 COMMENTAIRES RELATIFS AUX EFFETS ENVIRONNEMENTAUX ET FAIRES DU PRODUIT SELON NF P 01-010 § 4.7.2
2.1	Consommations des ressources naturelles (NF P 01-010 § 5.1) 3
2.2	Emissions dans l'air, l'eau et le sol (NF P 01-010 § 5.2)
2.3	Production de déchets (<i>NF P 01-010 § 5.3</i>)
	PACTS ENVIRONNEMENTAUX REPRESENTATIFS DES PRODUITS DE STRUCTION SELON NF P 01-010 § 6
SANIT	ONTRIBUTION DU PRODUIT A L'EVALUATION DES RISQUES FAIRES ET DE LA QUALITE DE VIE A L'INTERIEUR DES BATIMENTS N NF P 01-010 § 7
4.1 <i>7.2</i>)	Informations utiles à l'évaluation des risques sanitaires (NF P 01-010 § 3
	Contribution du produit à la qualité de vie à l'intérieur des bâtiments (<i>NF</i> 1-010 § 7.3)
DES F	JTRES CONTRIBUTIONS DU PRODUIT NOTAMMENT PAR RAPPORT A PREOCCUPATIONS D'ECOGESTION DU BATIMENT, D'ECONOMIE ET DE IQUE ENVIRONNEMENTALE GLOBALE
5.1	Ecogestion du bâtiment3
5.2	Préoccupation économique3
5.3	Politique environnementale globale3
	NNEXE: CARACTERISATION DES DONNEES POUR LE CALCUL DE ENTAIRE DE CYCLE DE VIE (ICV)
6.1	Définition du système d'ACV (Analyse de Cycle de Vie) 3
6.2	Sources de données3
6.3	Traçabilité3

Avertissement

Le SNPPA a demandé à Ecobilan de l'assister dans la réalisation de Fiches de Déclaration Environnementale et Sanitaire (dites FDES) dans le cadre de la commande N°7595.4.

Ecobilan, le SNPPA n'acceptent aucune responsabilité vis à vis de tout tiers auquel les résultats de l'étude auront été communiqués ou dans les mains desquels ils seraient parvenus, l'utilisation des résultats par leurs soins relevant de leur propre responsabilité.

Nous rappelons que les résultats de l'étude sont fondés seulement sur des faits, circonstances et hypothèses qui nous ont été soumis au cours de l'étude. Si ces faits, circonstances et hypothèses diffèrent, les résultats sont susceptibles de changer.

De plus il convient de considérer les résultats de l'étude dans leur ensemble, au regard des hypothèses, et non pas pris isolément.

INTRODUCTION

Le cadre utilisé pour la présentation de la déclaration environnementale et sanitaire du panneau sandwich de bardage à âme polyuréthanne et à deux parements acier est la Fiche de Déclaration Environnementale et Sanitaire élaborée par l'AIMCC (FDE&S version 2005).

Cette fiche constitue un cadre adapté à la présentation des caractéristiques environnementales et sanitaires des produits de construction conformément aux exigences de la norme NF P 01-010 et à la fourniture de commentaires et d'informations complémentaires utiles dans le respect de l'esprit de cette norme en matière de sincérité *et de transparence (NF P 01-010 § 4.2).*

Un rapport d'accompagnement de la déclaration a été établi, il peut être consulté, sous accord de confidentialité, au siège du SNPPA.

Toute exploitation, totale ou partielle, des informations ainsi fournies devra au minimum être constamment accompagnée de la référence complète de la déclaration d'origine : « titre complet, date d'édition, adresse de l'émetteur » qui pourra remettre un exemplaire authentique.

Producteur des données (NF P 01-010 § 4).

Les informations contenues dans cette déclaration sont fournies sous la responsabilité du SNPPA selon la norme NF P 01-010 § 4.6.

Contacts:

SNPPA

David Izabel

6-14 rue La Pérouse

Paris 75784 Paris Cedex 16

Tél.: 01 40 69 58 90

Fax.: 01 40 69 58 99

Les industriels suivants, ayant participé à la réalisation de cette FDES peuvent l'utiliser dans le cadre de réponses à des appels offres HQE :

> ArcelorMittal Construction France. Plast'Europ Panelco SAS, Corus Bâtiment et Systèmes Monopanel, ThyssenKruppSteel Isocab France, Dagard

GUIDE DE LECTURE

Précision sur le format d'affichage des données

Certaines valeurs sont affichées au format scientifique conformément à l'exemple suivant :

$$-4,21 \text{ E}-06 = -4,21 \text{ x } 10^{-6}$$

Règles d'affichage

Les règles d'affichage suivantes s'appliquent :

- Lorsque le résultat de calcul de l'inventaire est nul, alors la valeur zéro est affichée.
- Toutes les valeurs non nulles seront exprimées avec 3 chiffres significatifs.
- Pour chaque flux de l'inventaire, les valeurs permettant de justifier 99,9 % de la valeur de la colonne « total » sont affichées ; les autres, non nulles, sont masquées.
- Si la valeur de la colonne « Total cycle de vie / Pour toute la DVT » est inférieure à 10⁻⁵, alors toute la ligne est grisée.

L'objectif est de mettre en évidence les chiffres significatifs.

Abréviation utilisée

DVT : Durée de Vie Typique

UF: Unité Fonctionnelle

1 Caractérisation du produit selon NF P 01-010 § 4.3

1.1 Définition de l'Unité Fonctionnelle (UF)

Constituer 1 m² de paroi verticale pendant une annuité en assurant les performances prescrites du produit.

1.2 Masses et données de base pour le calcul de l'unité fonctionnelle (UF)

Quantité de produit, d'emballage de distribution et de produits complémentaires contenue dans l'UF sur la base d'une Durée de Vie Typique (DVT) de 50 ans.

La durée de vie des structures porteuses du bardage est définie dans l'Eurocode 0 (Pr EN 1990 : 2001). Le panneau sandwich de bardage à âme polyuréthanne et à deux parements acier est fixé sur la structure porteuse. Ainsi, sa durée de vie est estimée au moins identique à celle-ci.

Produit

Le produit étudié est le panneau sandwich de bardage à âme polyuréthanne et à deux parements acier. La masse surfacique moyenne est égale 12,62 kg/m². (gamme d'épaisseur entre 30 et 200 mm)

Le flux de référence de l'Analyse de Cycle de Vie (ACV) du produit est 1 m^2 / 50 ans de produit et correspond à 0.02 m^2 de surface (1 m^2 / 50), soit 0.252 kg de panneau sandwich de bardage à âme polyuréthanne et à deux parements acier.

Le produit ayant un usage industriel mais également agroalimentaire, les incerts ont été pris en compte dans l'unité fonctionnelle. La quantité d'insert est de 0,006 g// UF (0,30 g / m2 / 50 ans)

Emballages de distribution*

0,597 g de polystyrène (29,85 g / m² / 50 ans)
 1,46 g de plastique (73 g / m² / 50 ans)
 2,08 g de bois (104 g / m² / 50 ans)
 0,014 g de sangles métalliques (0,70 g / m² / 50 ans)

Produits complémentaire pour la mise en œuvre

Vis de fixation: 0,043 g/UFEau de nettoyage: 0,5 L/UF

Le taux de chutes lors de la mise en œuvre et l'entretien (y compris remplacement partiel éventuel) : 5%

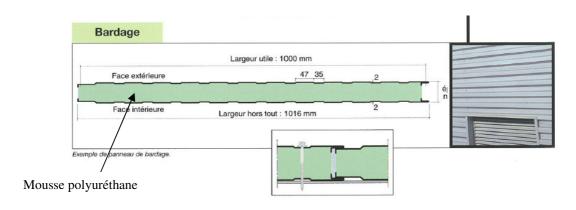
* Les chiffres relatifs à l'unité fonctionnelle et au flux de référence sont arrondis respectivement à 10^{-3} près et à 10^{-2} près.

Justification des informations fournies

• Les données de production du panneau sandwich à âme polyuréthanne et à deux parements acier, sont fournies par

les sites

- Les quantités d'emballages sont calculées à partir des consommations annuelles des sites de production. Ces chiffres intègrent donc le rendement sur site de l'étape de conditionnement.
- Vis de fixation à l'étape de mise en œuvre : 0,043 g/UF


Selon les Avis techniques en vigueur, il faut 4 vis pour fixer 6 m² de panneau sandwich bardage et 7 pour 12m². Le nombre de vis de fixation nécessaire est en moyenne 0,62 vis/m². Une vis courante pèse 3,5 g. La masse des vis de fixation est ainsi égale 2,17 g/m². Ainsi, la masse des fixations ramenée à l'Unité Fonctionnelle est égale 2,17/50 soit 0,043 g/UF.

• Eau de nettoyage à l'étape de vie en œuvre : 0,5 L/UF

Les Avis Techniques en vigueur préconisent un entretien tous les deux ans pour assurer la pérennité du produit. La quantité d'eau de nettoyage est estimée à 1 litre/m²/2ans. Ainsi, la consommation d'eau ramenée à l'unité fonctionnelle est égale à 0,5 litre/UF.

Note : L'entretien du panneau sandwich de bardage à âme polyuréthanne et à deux parements acier ne nécessite pas l'usage de détergent. Il se fait uniquement à l'eau claire.

1.3 Caractéristiques techniques utiles non contenues dans la définition de l'unité fonctionnelle

Les produits étudiés dans le cadre de ce projet sont les panneaux sandwich ayant deux usages possibles :

- Usage industriel : la charpente métallique qui reçoit les panneaux sandwich est à l'intérieur du bâtiment.
- Usage agroalimentaire : la charpente métallique qui reçoit les panneaux est à l'extérieur du bâtiment. Des insères métalliques sont placés au sein des panneaux sandwich.

L'épaisseur de l'isolant est fonction de l'usage industriel ou agroalimentaire des panneaux sandwich.

Pour cette étude, seuls les panneaux sandwich utilisés pour les locaux industriels et certains locaux agro-alimentaires ne nécessitant pas de nettoyage intensif et sans contraintes d'ambiance intérieures significatives ont été retenus. Les locaux agro-alimentaires classés Ai1 et Ai2 dont les températures intérieures sont comprises entre -20°C et 25°C ont été retenus (cf. DTU 45.1, octobre 2001).

La mousse polyuréthane inclus la mousse PIR (âme polyisocyanate), le PIR étant un type de PUR (âme polyuréthanne).

2 Données d'Inventaire et autres données selon NF P 01-010 § 5 et commentaires relatifs aux effets environnementaux et sanitaires du produit selon NF P 01-010 § 4.7.2

Les données d'inventaire de cycle de vie qui sont présentées ci-après ont été calculées pour l'unité fonctionnelle définie en 1.1 et 1.2

Un guide de lecture des tableaux est disponible page 4.

2.1 Consommations des ressources naturelles (NF P 01-010 § 5.1)

2.1.1 Consommation de ressources naturelles énergétiques et indicateurs énergétiques $(NF\ P\ 01\text{-}010\ \S\ 5.1.1)$

	Unités	Production	Transport	Mise en œuvre	Vie en œuvre	Fin de vie	Total cyc	ele de vie
Flux							Par annuité	Pour toute la DVT
Consommation de	ressources	naturelles	énergétiqu	ies				
Bois	kg	0.00838		0	0		0.00838	0.419
Charbon	kg	0.0866		0	0		0.0866	4.33
Lignite	kg	0.00264		0	0		0.00264	0.132
Gaz naturel	kg	0.0898		0	0		0.0898	4.49
Pétrole	kg	0.0724		0	0	0.000212	0.0726	3.63
Uranium (U)	kg	4.28 E-06		0	0		4.28 E-06	0.000214
Etc.								
Indicateurs énergé	tiques							
Energie Primaire Totale	MJ	11.8		0	0		11.8	589
Energie Renouvelable	MJ	0.494		0	0		0.494	24.7
Energie Non Renouvelable	MJ	11.2		0	0		11.2	561
Energie procédé	MJ	9.26		0	0	0.00925	9.27	464
Energie matière	MJ	2.49		0	0		2.49	124
Electricité	kWh	0.189		0	0		0.189	9.46

Commentaires relatifs à la consommation de ressources naturelles énergétiques et aux indicateurs énergétiques :

La principale ressource énergétique consommée est le charbon. Cette ressource est consommée pour produire l'acier primaire. Le gaz naturel et le pétrole sont par ailleurs consommés pour la production de la mousse polyuréthanne et l'acier primaire. Au total à l'étape de production, 91% de l'énergie primaire sont consommées pour la production des matières premières (dont 37% imputable à l'acier primaire et 52% à la mousse polyuréthanne)

Les sites de production consomment de l'électricité pour le profilage des tôles et la mise en place de l'isolant (18% de l'électricité consommée sur le cycle de vie du produit). L'électricité est par ailleurs utilisée pour la production du polyol et de l'isocianate (61%) et la production de l'énergie (19%)

Le bois est consommé pour la production des palettes. Celles-ci sont récupérées sur le chantier et empruntent le circuit de valorisation classique.

Les indicateurs énergétiques doivent être utilisés avec précaution car ils additionnent des énergies d'origine différente qui n'ont pas les mêmes impacts environnementaux (Se référer de préférence aux flux élémentaires)

2.1.2 Consommation de ressources naturelles non énergétiques (NF P 01-010 § 5.1.2)

Un guide de lecture des tableaux est disponible page 4.

	Unités	Production	Transport	Mise en œuvre	Vie en œuvre	Fin de vie	Total cy	cle de vie
Flux							Par annuité	Pour toute la DVT
Antimoine (Sb)	kg	0	0	0	0	0	0	0
Argent (Ag)	kg	2.22 E-11		0	0	3.14 E-14	2.22 E-11	1.11 E-09
Argile	kg	5.11 E-05		0	0		5.11 E-05	0.00256
Arsenic (As)	kg	0	0	0	0	0	0	0
Bauxite (Al ₂ O ₃)	kg	4.67 E-05		0	0		4.67 E-05	0.00233
Bentonite	kg	5.26 E-06		0	0		5.26 E-06	0.000263
Bismuth (Bi)	kg	0	0	0	0	0	0	0
Bore (B)	kg	0	0	0	0	0	0	0
Cadmium (Cd)	kg	0	0	0	0	0	0	0
Calcaire	kg	0.0256		0	0		0.0256	1.28
Carbonate de Sodium (Na ₂ CO ₃)	kg	0	0	0	0	0	0	0
Chlorure de Potasium (KCl)	kg	0.000461		0	0		0.000461	0.0230
Chlorure de Sodium (NaCl)	kg	0.0761		0	0		0.0761	3.81
Chrome (Cr)	kg	2.70 E-07		0	0		2.70 E-07	1.35 E-05
Cobalt (Co)	kg	0	0	0	0	0	0	0
Cuivre (Cu)	kg	1.79 E-07		0	0		1.79 E-07	8.94 E-06
Dolomie	kg	0.00195		0	0		0.00195	0.0973
Etain (Sn)	kg	0	0	0	0	0	0	0
Feldspath	kg	2.15 E-05	0	0	0	0	2.15 E-05	0.00107
Fer (Fe)	kg	0.0993		0	0		0.0993	4.96
Fluorite (CaF ₂)	kg	2.26 E-05	0	0	0	0	2.26 E-05	0.00113
Gravier	kg	9.85 E-06		0	0	1.54 E-07	1.00 E-05	0.000501
Lithium (Li)	kg	0	0	0	0	0	0	0

	Unités	Production	Transport	Mise en œuvre	Vie en œuvre	Fin de vie	Total cy	cle de vie
Flux							Par annuité	Pour toute la DVT
Kaolin (Al ₂ O ₃ , 2SiO ₂ ,2H ₂ O)	kg	0	0	0	0	0	0	0
Magnésium (Mg)	kg	3.08 E-10	0	0	0	0	3.08 E-10	1.54 E-08
Manganèse (Mn)	kg	5.12 E-10		0	0	7.26 E-13	5.13 E-10	2.56 E-08
Mercure (Hg)	kg	1.50 E-07	0	0	0	0	1.50 E-07	7.50 E-06
Molybdène (Mo)	kg	0	0	0	0	0	0	0
Nickel (Ni)	kg	1.89 E-08		0	0		1.89 E-08	9.44 E-07
Or (Au)	kg	0	0	0	0	0	0	0
Palladium (Pd)	kg	0	0	0	0	0	0	0
Platine (Pt)	kg	0	0	0	0	0	0	0
Plomb (Pb)	kg	1.69 E-07		0	0		1.69 E-07	8.46 E-06
Rhodium (Rh)	kg	0	0	0	0	0	0	0
Rutile (TiO ₂)	kg	6.84 E-11	0	0	0	0	6.84 E-11	3.42 E-09
Sable	kg	9.58 E-05		0	0		9.58 E-05	0.00479
Silice (SiO ₂)	kg	0	0	0	0	0	0	0
Soufre (S)	kg	0.000212		0	0		0.000212	0.0106
Sulfate de Baryum (Ba SO ₄)	kg	3.23 E-05		0	0		3.23 E-05	0.00161
Titane (Ti)	kg	1.08 E-12	0	0	0	0	1.08 E-12	5.40 E-11
Tungstène (W)	kg	0	0	0	0	0	0	0
Vanadium (V)	kg	0	0	0	0	0	0	0
Zinc (Zn)	kg	3.75 E-06		0	0		3.75 E-06	0.000187
Zirconium (Zr)	kg	0	0	0	0	0	0	0
Matières premières végétales non spécifiées avant	kg	0	0	0	0	0	0	0
Matières premières animales non spécifiées avant	kg	0	0	0	0	0	0	0
Produits intermédiaires non remontés (total)	kg	1.86 E-05		0	0	1.59 E-07	1.88 E-05	0.000938
Etc.	kg							

Commentaires relatifs à la consommation de ressources naturelles non énergétiques :

La principale ressource consommée est le minerai de fer. Cette ressource est consommée pour produire les bobines d'acier et les vis de fixation.

La quantité de fer extraite est égale à 0,00993 kg/UF. A titre indicatif, le minerai de fer contient 64,5% de fer (Teneur en fer des minerais de fer, Source : IISI). Ainsi la quantité de minerai de fer est égale à 0,154 kg/UF.

Par ailleurs, le chlorure de sodium et le calcaire sont utilisés pour la production de la mousse polyuréthanne.

2.1.3 Consommation d'eau (prélèvements) (NF P 01-010 § 5.1.3)

Un guide de lecture des tableaux est disponible page 4.

	Unités	Production	Transport	Mise en œuvre	Vie en œuvre	Fin de vie	Total cycle de vie	
Flux							Par annuité	Pour toute la DVT
Eau : Lac	litre	0	0	0	0	0	0	0
Eau : Mer	litre	0.0317		0	0		0.0317	1.58
Eau : Nappe Phréatique	litre	0.00243		0	0		0.00243	0.122
Eau : Origine non Spécifiée	litre	4.27		0	0.500		4.78	239
Eau: Rivière	litre	1.37		0	0		1.37	68.5
Eau Potable (réseau)	litre	3.34		0	0		3.34	167
Eau Consommée (total)	litre	9.02		0	0.500		9.52	476
Etc.	litre							

Commentaires relatifs à la consommation d'eau (prélèvements) :

Le profilage de la bobine d'acier et la mise en place de l'isolant ne consomment pas d'eau. La pricipale source consommatrice d'eau est due à au Cycle de Production d'acier (depuis le berceau jusqu'à la production des bobines d'acier).

2.1.4 Consommation d'énergie et de matière récupérées (NF P 01-010 § 5.1.4)

Un guide de lecture des tableaux est disponible page 4.

	Unités	Production	Transport	Mise en œuvre	Vie en œuvre	Fin de vie	Total cy	cle de vie
Flux							Par annuité	Pour toute la DVT
Energie Récupérée	MJ	0	0	0	0	0	0	0
Matière Récupérée : Total	kg	0.184		0	0		0.184	9.22
Matière Récupérée : Acier	kg	0.184		0	0		0.184	9.22
Matière Récupérée : Aluminium	kg	0	0	0	0	0	0	0
Matière Récupérée : Métal (non spécifié)	kg	0	0	0	0	0	0	0
Matière Récupérée : Papier-Carton	kg	0	0	0	0	0	0	0
Matière Récupérée : Plastique	kg	0	0	0	0	0	0	0
Matière Récupérée : Calcin	kg	0	0	0	0	0	0	0
Matière Récupérée : Biomasse	kg	0	0	0	0	0	0	0
Matière Récupérée : Minérale	kg	0	0	0	0	0	0	0
Matière Récupérée : Non spécifiée	kg	0	0	0	0	0	0	0
Etc.	kg							

Commentaires relatifs à la consommation d'énergie et de matière récupérées :

La quantité de ferraille récupérée lors du Cycle de Vie du panneau sandwich à âme polyuréthanne et à deux parements acier est égale à 0,184 kg/UF, soit 9,22 kg d'acier récupéré sur la durée de vie du produit.

Note: Cette quantité ne représente pas le contenu en recyclé du produit.

2.2 Emissions dans l'air, l'eau et le sol (NF P 01-010 § 5.2)

2.2.1 Emissions dans l'air (*NF P 01-010 § 5.2.1*)

Un guide de lecture des tableaux est disponible page 4.

	Unités	Production	Transport	Mise en œuvre	Vie en œuvre	Fin de vie	Total cyc	ele de vie
Flux							Par annuité	Pour toute la DVT
Hydrocarbures (non spécifiés)	g	0.233		0	0		0.233	11.6
Hydrocarbures (non spécifiés, excepté méthane)	g	0.113		0	0	0.00240	0.116	5.80
HAP ^a (non spécifiés)	g	0.000163		0	0		0.000163	0.00816
Méthane (CH ₄)	g	2.60		0	0		2.60	130
Composés organiques volatils (par exemple, acétone, acétate, etc.)	g	0.0422	0	0	0	0	0.0422	2.11
Dioxyde de Carbone (CO ₂)	g	520		0	0	0.690	521	26 030
Monoxyde de Carbone (CO)	g	3.85		0	0		3.85	192
Oxydes d'Azote (NOx en NO ₂)	g	1.40		0	0	0.00817	1.40	70.2
Protoxyde d'Azote (N ₂ O)	g	0.0155		0	0	8.88 E-05	0.0156	0.780
Ammoniaque (NH ₃)	g	0.00902		0	0		0.00902	0.451
Poussières (non spécifiées)	g	0.0279		0	0	0.000472	0.0284	1.42
Oxydes de Soufre (SOx en SO ₂)	g	1.41		0	0		1.41	70.6
Hydrogène Sulfureux (H ₂ S)	g	0.00355		0	0		0.00355	0.178
Acide Cyanhydrique (HCN)	g	1.02 E-06		0	0		1.02 E-06	5.08 E-05
Acide phosphorique (H3PO4)	g	0	0	0	0	0	0	0
Composés chlorés organiques (en Cl)	g	1.47 E-06		0	0		1.47 E-06	7.37 E-05
Acide Chlorhydrique (HCl)	g	0.0276		0	0		0.0276	1.38
Composés chlorés inorganiques (en Cl)	g	0.0236		0	0		0.0236	1.18
Composés chlorés non spécifiés (en Cl)	g	0.00108		0	0		0.00108	0.0539
Composés fluorés organiques (en F)	g	1.64 E-06		0	0	4.32 E-08	1.68 E-06	8.40 E-05
Composés fluorés inorganiques (en F)	g	0.000389		0	0		0.000389	0.0194
Composés halogénés (non spécifiés)	g	0.000537		0	0		0.000537	0.0269
Composés fluorés non spécifiés (en F)	g	0	0	0	0	0	0	0
Métaux (non spécifiés)	g	0.000612		0	0		0.000612	0.0306
Antimoine et ses composés (en Sb	g	4.08 E-08		0	0		4.08 E-08	2.04 E-06
Arsenic et ses composés (en As)	g	1.06 E-06		0	0	3.18 E-09	1.07 E-06	5.34 E-05

	Unités	Production	Transport	Mise en œuvre	Vie en œuvre	Fin de vie	Total cyc	cle de vie
Flux							Par annuité	Pour toute la DVT
Cadmium et ses composés (en Cd)	g	2.59 E-05		0	0		2.59 E-05	0.00129
Chrome et ses composés (en Cr)	g	4.72 E-05		0	0		4.72 E-05	0.00236
Cobalt et ses composés (en Co)	g	1.87 E-06		0	0	7.82 E-09	1.87 E-06	9.37 E-05
Cuivre et ses composés (en Cu)	g	3.10 E-06		0	0	1.18 E-08	3.11 E-06	0.000156
Etain et ses composés (en Sn)	g	1.10 E-08		0	0		1.10 E-08	5.48 E-07
Manganèse et ses composés (en Mn)	g	9.92 E-07		0	0		9.93 E-07	4.96 E-05
Mercure et ses composés (en Hg)	g	4.32 E-05		0	0		4.32 E-05	0.00216
Nickel et ses composés (en Ni)	g	0.000120		0	0	1.56 E-07	0.000120	0.00599
Plomb et ses composés (en Pb)	g	0.000911		0	0		0.000911	0.0456
Sélénium et ses composés (en Se)	g	1.03 E-06		0	0	3.24 E-09	1.04 E-06	5.18 E-05
Tellure et ses composés (en Te)	g	0	0	0	0	0	0	0
Zinc et ses composés (en Zn)	g	0.00494		0	0	2.66 E-05	0.00496	0.248
Vanadium et ses composés (en V)	g	0.000144		0	0	6.26 E-07	0.000144	0.00721
Silicium et ses composés (en Si)	g	0.000264		0	0		0.000264	0.0132
Etc.	g						_	
^a HAP : Hydrocarbures Are	omatiques Pol	ycycliques						

NOTE : Concernant les émissions radioactives, ce tableau devra être complété dès que la transposition de la directive européenne Euratom sur les émissions radioactives sera publiée.

Commentaires relatifs aux émissions dans l'air :

Les émissions dans l'air ne proviennent pas des sites de fabrication du produit. Les Cycles de Production d'acier, (depuis le berceau jusqu'à la production des bobines d'acier prélaqué), du polyol et de l'isocianate (entrant dans la composition de la mousse isolante) sont les principales sources émettrices dans l'air.

Dioxyde de carbone (CO₂)

Les 521g de CO_2 sont émis lors de la production (99,9%) principalement lors de la production des matières premières (93%) et de leur transport (4%)

2.2.2 Emissions dans l'eau (*NF P 01-010 § 5.2.2*)

Un guide de lecture des tableaux est disponible page 4.

	Unités	Production	Transport	Mise en œuvre	Vie en œuvre	Fin de vie	Total cyc	cle de vie
Flux							Par annuité	Pour toute la DVT
DCO (Demande Chimique en Oxygène)	g	0.420		0	0	0.0320	0.452	22.6
DBO5 (Demande Biochimique en Oxygène à 5 jours)	g	0.0570		0	0	0.00767	0.0646	3.23
Matière en Suspension (MES)	g	1.86		0	0	0.00896	1.87	93.3
Cyanure (CN-)	g	4.13 E-06		0	0	4.46 E-08	4.18 E-06	0.000209
AOX (Halogènes des composés organiques adsorbables)	g	0.000916		0	0		0.000916	0.0458
Hydrocarbures (non spécifiés)	g	0.0908		0	0	0.000321	0.0911	4.56
Composés azotés (en N)	g	0.120		0	0		0.120	5.98
Composés phosphorés (en P)	g	0.0286		0	0		0.0286	1.43
Composés fluorés organiques (en F)	g	4.79 E-05		0	0	2.20 E-07	4.81 E-05	0.00241
Composés fluorés inorganiques (en F)	g	0	0	0	0	0	0	0
Composés fluorés non spécifiés (en F)	g	0	0	0	0	0	0	0
Composés chlorés organiques (en Cl)	g	0.000220		0	0		0.000220	0.0110
Composés chlorés inorganiques (en Cl)	g	37.9		0	0		37.9	1 894
Composés chlorés non spécifiés (en Cl)	g	0.000136		0	0	1.86 E-07	0.000136	0.00681
HAP (non spécifiés)	g	1.02 E-05		0	0	2.70 E-07	1.05 E-05	0.000526
Métaux (non spécifiés)	g	0.0120		0	0	0.00402	0.0161	0.803
Aluminium et ses composés (en Al)	g	0.000351		0	0		0.000351	0.0176
Arsenic et ses composés (en As)	g	1.74 E-06		0	0	8.78 E-09	1.75 E-06	8.73 E-05
Cadmium et ses composés (en Cd)	g	2.05 E-05		0	0		2.05 E-05	0.00103
Chrome et ses composés (en Cr)	g	0.000291		0	0		0.000291	0.0146
Cuivre et ses composés (en Cu)	g	1.99 E-05		0	0	2.96 E-08	1.99 E-05	0.000997
Etain et ses composés (en Sn)	g	5.14 E-09		0	0		5.14 E-09	2.57 E-07
Fer et ses composés (en Fe)	g	0.0183		0	0		0.0183	0.914
Mercure et ses composés (en Hg)	g	2.11 E-05		0	0		2.11 E-05	0.00105
Nickel et ses composés (en Ni)	g	0.000370		0	0		0.000370	0.0185
Plomb et ses composés (en Pb)	g	9.06 E-05		0	0		9.06 E-05	0.00453
Zinc et ses composés (en Zn)	g	0.00388		0	0		0.00388	0.194
Eau rejetée	Litre	0.0187		0	0.500		0.519	25.9
Etc.	g							

Commentaires sur les émissions dans l'eau :								
Les rejets dans l'eau ne proviennent pas des sites de fabrication directement. Le Cycle de Production d'acier (depuis le berceau jusqu'à la production des bobines) mais surtout celui du polyol et de l'isocianate (entrant dans la composition de la mousse isolante) sont les principales sources émettrices dans l'eau.								
de la mousse isolante) sont les principales sources émettrices dans l'eau. La quantité d'eau rejetée à l'étape de vie en œuvre correspond à la consommation d'eau de nettoyage.								

2.2.3 Emissions dans le sol (*NF P 01-010 § 5.2.3*)

Un guide de lecture des tableaux est disponible page 4.

	Unités	Production	Transport	Mise en œuvre	Vie en œuvre	Fin de vie	Total cyc	cle de vie
Flux							Par annuité	Pour toute la DVT
Arsenic et ses composés (en As)	g	2.34 E-08		0	0	3.30 E-11	2.34 E-08	1.17 E-06
Biocides ^a	g	0	0	0	0	0	0	0
Cadmium et ses composés (en Cd)	g	1.06 E-11		0	0	1.50 E-14	1.06 E-11	5.30 E-10
Chrome et ses composés (en Cr)	g	2.92 E-07		0	0	4.14 E-10	2.92 E-07	1.46 E-05
Cuivre et ses composés(en Cu)	g	5.38 E-11		0	0	7.60 E-14	5.39 E-11	2.69 E-09
Etain et ses composés (en Sn)	g	0	0	0	0	0	0	0
Fer et ses composés (en Fe)	g	0.000117		0	0	1.65 E-07	0.000117	0.00585
Plomb et ses composés (en Pb)	g	2.46 E-10		0	0	3.48 E-13	2.46 E-10	1.23 E-08
Mercure et ses composés (en Hg)	g	1.95 E-12		0	0	2.76 E-15	1.95 E-12	9.75 E-11
Nickel et ses composés (en Ni)	g	8.06 E-11		0	0	1.14 E-13	8.07 E-11	4.04 E-09
Zinc et ses composés (en Zn)	g	8.78 E-07		0	0	1.24 E-09	8.79 E-07	4.40 E-05
Métaux lourds (non spécifiés)	g	0	0	0	0	0	0	0
Etc.	g							

^a Biocides : par exemple, pesticides, herbicides, fongicides, insecticides, bactéricides, etc.

Commentaires sur les émissions dans le sol :

Le cycle de vie du panneau sandwich à âme polyuréthanne et à deux parements acier n'engendre pas d'émissions dans le sol qui lui soient directement imputables.

2.3 Production de déchets (*NF P 01-010 § 5.3*)

2.3.1 Déchets valorisés (*NF P 01-010 § 5.3*)

Un guide de lecture des tableaux est disponible page 4.

	Unités	Production	Transport	Mise en œuvre	Vie en œuvre	Fin de vie	Total cyc	cle de vie
Flux							Par annuité	Pour toute la DVT
Energie Récupérée	MJ	0.337	0	0	0	0	0.337	16.8
Matière Récupérée : Total	kg	0.0224		0.00375	0	0.201	0.227	11.3
Matière Récupérée : Acier	kg	0.0216			0	0.201	0.222	11.1
Matière Récupérée : Aluminium	kg	0	0	0	0	0	0	0
Matière Récupérée : Métal (non spécifié)	kg	0	0	0	0	0	0	0
Matière Récupérée : Papier-Carton	kg	0	0	0	0	0	0	0
Matière Récupérée : Plastique	kg	0.000651	0	0.00154	0	0	0.00219	0.109
Matière Récupérée : Calcin	kg	0	0	0	0	0	0	0
Matière Récupérée : Biomasse	kg	0.000191	0	0.00219	0	0	0.00238	0.119
Matière Récupérée : Minérale	kg	0	0	0	0	0	0	0
Matière Récupérée : Non spécifiée	kg	4.43 E-05		0	0		4.43 E-05	0.00221
Etc.					_		_	_

2.3.2 Déchets éliminés (*NF P 01-010 § 5.3*)

Un guide de lecture des tableaux est disponible page 4.

	Unités	Production	Transport	Mise en œuvre	Vie en œuvre	Fin de vie	Total cycle de vie	
Flux							Par annuité	Pour toute la DVT
Déchets dangereux	kg	0.00421		0	0		0.00421	0.210
Déchets non dangereux	kg	0.0246		0.00105	0		0.0257	1.28
Déchets inertes	kg	0.00614		0	0		0.00614	0.307
Déchets radioactifs	kg	9.35 E-06		0	0	1.48 E-07	9.50 E-06	0.000475
Etc.	kg							

Commentaires relatifs à la production et aux modalités de gestion des déchets

En dehors de la fin de vie du produit, la principale étape génératrice de déchets est celle de production. Les principaux déchets générés sont les déchets d'acier qui sont valorisés par une réintroduction en tant que matière première dans le cycle de production de l'acier.

Les sites de fabrication des panneaux sandwich valorisent les déchets suivants :

- les chutes de tôle d'acier prélaqué ;
- les palettes en bois ;
- le papier-carton;
- le plastique.

Les déchets de chantiers (chutes éventuelles et emballages) suivent les circuits usuels de valorisation.

3 Impacts environnementaux représentatifs des produits de construction selon NF P 01-010 § 6

Tous ces impacts sont renseignés ou calculés conformément aux indications du § 6.1 de la norme NF P01-010, à partir des données du § 2 et pour l'unité fonctionnelle de référence par annuité définie au § 1.1 et 1.2 de la présente déclaration, ainsi que pour l'unité fonctionnelle rapportée à toute la DVT (Durée de Vie Typique).

N°	Impact environnemental	Valeur de l'indicateur pour l'unité fonctionnelle		Valeur de l'indicateur pour toute la DVT	
1	Consommation de ressources énergétiques				
	Energie primaire totale	11.8	MJ/UF	589	MJ
	Energie renouvelable	0.494	MJ/UF	24.7	MJ
	Energie non renouvelable	11.2	MJ/UF	561	MJ
2	Epuisement de ressources (ADP)	0.00432	kg équivalent antimoine (Sb)/UF	0.216	kg équivalent antimoine (Sb)
3	Consommation d'eau totale	9.52	litre/UF	476	Litre
4	Déchets solides				
	Déchets valorisés (total)	0.227	kg/UF	11.3	Kg
	Déchets éliminés				
	Déchets dangereux	0.00421	kg/UF	0.210	Kg
	Déchets non dangereux	0.0257	kg/UF	1.28	Kg
	Déchets inertes	0.00614	kg/UF	0.307	Kg
	Déchets radioactifs	9.50 E-06	kg/UF	0.000475	Kg
5	Changement climatique	0.580	kg équivalent CO ₂ /UF	29.0	kg équivalent CO ₂
6	Acidification atmosphérique	0.00244	kg équivalent SO ₂ /UF	0.122	kg équivalent SO ₂
7	Pollution de l'air	56.1	m³/UF	2 803	m ³
8	Pollution de l'eau	0.108	m³/UF	5.39	m ³
9	Destruction de la couche d'ozone stratosphérique	0	kg CFC équivalent R11/UF	0	kg CFC équivalent R11
10	Formation d'ozone photochimique	0.000139	kg équivalent éthylène/UF	0.00697	kg équivalent éthylène

4 Contribution du produit à l'évaluation des risques sanitaires et de la qualité de vie à l'intérieur des bâtiments selon NF P 01-010 § 7

Contribution du produit		Paragraphe concerné	Expression (Valeur de mesures, calculs)
A l'évaluation des risques sanitaires	Qualité sanitaire des espaces intérieurs	§ 4.1.1	Voir paragraphe concerné
	Qualité sanitaire de l'eau	§ 4.1.2	Voir paragraphe concerné
A la qualité de la vie	Confort hygrothermique	§ 4.2.1	Voir paragraphe concerné
	Confort acoustique	§ 4.2.2	Voir paragraphe concerné
	Confort visuel	§ 4.2.3	Voir paragraphe concerné
	Confort olfactif	§ 4.2.4	Voir paragraphe concerné

4.1 Informations utiles à l'évaluation des risques sanitaires (NF P 01-010 § 7.2)

La norme NF P 01-010 définit des informations quantitatives et qualitatives sur les substances qui peuvent avoir des effets sur la santé. Ces effets sont considérés aux étapes de mise en œuvre et de vie en œuvre du produit. Ils sont évalués en fonction des types de substances entrant dans la composition ou émises par le produit de construction et de leur classement dans les réglementations sur les substances dangereuses.

Les données sanitaires du panneau sandwich à deux parements acier sont exprimées indépendamment de l'unité fonctionnelle (UF). Les informations fournies ci-après ont été renseignées à partir des données disponibles notamment à partir des avis techniques des panneaux sandwich à deux parements acier des adhérents du SNPPA et des normes en vigueur.

4.1.1 Contribution à la qualité sanitaire des espaces intérieurs (NF P 01-010 § 7.2.1)

Le produit étudié est fabriqué à partir de bobines d'acier prélaqué et d'isolant thermique polyuréthanne

Bobine d'acier galvanisé et prélaqué :

L'acier n'est pas une substance radioactive. Il n'est pas classé selon la directive 93-32/CEE. Il ne représente pas de danger pour la santé lors de la vie en œuvre du produit.

La laque employée, couramment du polyester d'épaisseur nominal 25µm, est réalisée en usines* et a des émissions de COV inférieures aux limites de détection analytique. Des parements aciers prélaqué** ont fait l'objet d'une évaluation sanitaire des émissions de COV. Elles sont également inférieures aux limites de détection analytique dans les conditions de l'essai.

Les bobines d'acier galvanisé prélaqué utilisées pour réaliser les parements des panneaux sandwich sont conformes dans les Avis Techniques desdits panneaux à la série des normes NF EN 10 169 et leur champ d'utilisation est défini via des catégories selon la norme AFNOR XP P 34-301. Des guides de transposition permettent de passer des normes européennes aux normes françaises. Les essais concernent notamment la protection contre la corrosion, la résistance à l'humidité. La norme AFNOR XP P 34-301 définit les catégories d'utilisation des revêtements en fonction de l'ambiance intérieure et de l'atmosphère extérieure, de l'hygrométrie des locaux et de la situation des bâtiments.

Sources:

- * La bande entre immédiatement dans un four qui permet l'évaporation des solvants nécessaires à l'étalement du produit et la réticulation de la résine. Livre « De A à Z : Les profilés Minces en acier » SNPPA, 2007
- ** Rapport d'essai°SB-08-080, CSTB, novembre 2008 "Evaluation of VOC and formaldehyde emissions from 25 µm polyester pre-coated galvanized steel products according to the ECA, AgBB and AFSSET schemes"
- Norme AFNOR XP P 34-301 de novembre 2002
- Guides d'utilisation : GA A36-351 de septembre 2007, GA A36-335 de décembre 2005, GA A36-355 de mai 2005
- Normes NF EN 10 169-1 d'avril 2004, NF EN 10 169-2 de juillet 2006 et NF EN 10 169-3 de novembre 2003

Isolant - Polyuréthanne :

Les panneaux sandwich assemblés selon les règles de l'art présentent une étanchéité à l'air. Elle doit être assurée lorsque les joints sont incorporés au panneau et lorsque les garnitures d'étanchéité sont déposées en usine sur les rives longitudinales. Dans le cas des locaux agroalimentaires, les étanchéités sont généralement réalisées lors de la mise en œuvre.

De part ces dispositions d'assemblage et de confinement de l'isolant entre les parements acier, le produit ne présente pas en l'état actuel des connaissances de danger lors de sa mise en œuvre et de sa vie en œuvre.

Sources:

- E-Cahier du CSTB cahier 3501, « Panneaux sandwich isolants à parements métalliques conditions générales de conceptions et fabrications », Mars 2004 art 2.5
- Guide FFB/Ademe « construction métalliques réglementation thermique des bâtiments neufs de juin 2008»

Cas des ambiances Ai1 et Ai2 :

Par ailleurs, l'ouvrage réalisé en panneaux sandwich à deux parements acier utilisé en agroalimentaire doit être conforme au DTU 45.1- NF P 45-401, il en résulte que les matériaux ne doivent pas dégager de produits volatils incompatibles avec les produits entreposés ou transformés. La classification des locaux agroalimentaires et le choix des revêtements et des joints éventuels adaptés s'établit à partir du tableau D.1.4 du DTU 45.1- NF P 45-401, en fonction de l'agressivité, du nettoyage, de l'humidité et la température des locaux.

Note: pour les aspects sanitaires des joints éventuels, se référer aux FDES de ces produits.

Les fournisseurs de bobines prélaquées envoient, sur demande, aux producteurs de panneaux sandwich des attestations d'aptitude au contact alimentaire de leurs produits.

Par ailleurs, les produits sont exempts de zones de rétention ou difficilement nettoyable. Les accessoires de finitions sont conçus pour permettre un nettoyage aisé de l'ensemble de la construction. Dans ce cas, leurs conceptions peuvent être attestées par un organisme, comme par exemple, l'aptitude au nettoyage de la plinthe PVC certifié par l'AFSSA.

Sources:

- DTU 45.1- NF P 45-401 article 3.6, et le tableau D.1.4
- Attestation d'aptitude au nettoyage de la plinthe PVC certifié par l'AFSSA
- Exemples de certificat d'aptitude au contact temporaire avec les denrées alimentaires concernant un joint film PVC en et la laque polyester

4.1.2 Contribution à la qualité sanitaire de l'eau (NF P 01-010 § 7.2.2)

Les panneaux sandwich à utilisation industrielle ne sont pas destinés à être en contact avec l'eau sanitaire, en conséquence, aucun essai n'a été effectué à ce jour.

Les locaux agroalimentaires destinés à des denrées alimentaires qui sont préparées traitées ou transformées doivent être entretenus et facile à laver (matériaux étanches, non absorbantes, lavables et non toxiques – surface lisses)	·e
Source: DTU 45.1- NF P 45-401 annexe 1	
	_

4.2 Contribution du produit à la qualité de vie à l'intérieur des bâtiments (NF P 01-010 § 7.3)

4.2.1 Caractéristiques du produit participant à la création des conditions de <u>confort</u> <u>hygrothermique</u> dans le bâtiment (*NF P 01-010 § 7.3.1*)

Concernant l'étanchéité de la paroi à l'eau :

L'étanchéité est visée favorablement dans la partie Avis de chaque Avis Technique de panneaux sandwich à deux parements acier.

Ceci résulte du fait que les panneaux sandwich de bardage jouent un rôle d'enveloppe du bâtiment et assure une étanchéité à l'eau de part leurs compositions et leurs dispositions d'assemblage : les panneaux eux même, sont totalement imperméables et étanches et les dispositifs de fixation et emboitements périphériques sont équipés de joints étanches adaptés à la configuration et à l'architecture du bâtiment.

Sources:

- Gamme avis Techniques des adhérents du SNPPA CF Chapitre 2 : partie Avis de chaque Avis Technique
- « En savoir plus sur le panneau sandwich », SNPPA

Concernant la performance thermique de la paroi:

L'isolation thermique, en partie courante, est visée dans l'Avis Technique du panneau considéré pour différentes épaisseurs.

L'isolation thermique du produit dépend de l'épaisseur et de la nature du matériau isolant constituant l'âme et de son emboitement. L'ensemble des panneaux sandwich de bardage sont susceptibles de satisfaire les exigences minimales de la règlementation en vigueur applicable aux constructions neuves. La justification de ces performances doit être calculée au cas par cas.

Chaque avis technique des panneaux sandwich définit la performance thermique (U_p) des panneaux à partir du coefficient de transmission thermique en partie courante de paroi (U_c) et des ponts thermiques linéiques (correspondant à l'emboîtement entre panneaux) et ponctuels (correspondant à la fixation).

Les panneaux sandwich de bardage agroalimentaire à deux parements acier avec isolant en mousse de polyuréthanne permettent d'atteindre aujourd'hui des U_p de l'ordre de $0.15~W/(m^2.K)$.

Sources:

- « En savoir plus sur le panneau sandwich », SNPPA
- Guide FFB/Ademe « construction métallique réglementation thermique des bâtiments neufs de juin 2008»
- Gamme avis Techniques des adhérents du SNPPA

Concernant la perméabilité à l'air de la paroi:

Des valeurs de références sont définies dans la règlementation thermique en vigueur (article 20). Par ailleurs, des rapports d'essai peuvent être disponibles auprès des adhérents du SNPPA et font l'objet d'une évaluation dans les Avis techniques.

Source:

- Article 20 de la RT 2005 (Arrêté du 24/05/06)
- Rapports d'essai des adhérents
- Gamme avis Techniques des adhérents du SNPPA

Conclusion

L'ensemble de ces paramètres contribuent à évaluer le confort hygrothermique dans le bâtiment

Source : Gamme avis Techniques des adhérents du SNPPA

4.2.2 Caractéristiques du produit participant à la création des conditions de <u>confort</u> <u>acoustique</u> dans le bâtiment (*NF P 01-010 § 7.3.2*)

L'isolation acoustique, est visée dans l'Avis Technique du panneau considéré pour différentes épaisseurs.

Les panneaux sandwich de bardage peuvent être utilisés pour apporter une isolation phonique et acoustique du local en plus de leur rôle d'enveloppe du bâtiment. La nature de l'âme isolante contribue à l'isolation acoustique. Les parements intérieurs peuvent être perforés afin d'assurer un rôle complémentaires d'absorption des sons.

Concernant l'affaiblissement acoustique, les panneaux sandwich à deux parements acier et à âme polyuréthanne présentent un indice d'affaiblissement acoustiques Rw est de l'ordre de 25 dB.

Concernant l'absorption acoustique, il existe une gamme de panneau sandwich destinée à cette performance.

Source:

- Gamme avis Techniques des adhérents du SNPPA
- Profil Info SNPPA Juin 2008
- Gamme acoustique des adhérents SNPPA
- Les PV d'essais sont disponibles auprès des adhérents du SNPPA
- REEF acoustique du CSTB

4.2.3 Caractéristiques du produit participant à la création des conditions de <u>confort</u> <u>visuel</u> dans le bâtiment (*NF P 01-010 § 7.3.3*)

Les parements métalliques des panneaux sandwich se déclinent en un nuancier conséquent de couleurs pour lesquelles existent des performances techniques spécifiques.

Pour un revêtement polyester de 25 µm, la brillance nominale du bardage est de l'ordre de 35%.

Les degrés de réflexion intense par rapport à l'oxyde de magnésium sont les suivants :

• couleurs très claires : 75% - 90 %

• couleurs claires : 40% - 74%

• couleurs sombres: 8% - 39 %

Par ailleurs, les essais selon la série des normes NF EN 10 169 permettent de caractériser la brillance et la couleur du revêtement.

Sources :

- Normes NF EN 10 169-1 d'avril 2004, NF EN 10 169-2 de juillet 2006 et NF EN 10 169-3 de novembre 2003
- Gamme de revêtement polyester des adhérents du SNPPA
- NF EN-1991-1-5 de mai 2004, tableau 5.2

4.2.4 Caractéristiques du produit participant à la création des conditions de <u>confort</u> olfactif dans le bâtiment (*NF P 01-010 § 7.3.4*)

L'acier est un métal qui n'a pas d'odeur particulière. Le revêtement employée en œuvre n'émet pas d'odeur du fait de sa

fabrication *. Aucun essai d'émissions d'odeur n'a été réalisé à ce jour.

Par ailleurs, l'ouvrage réalisé en panneaux sandwich à deux parements acier utilisé en agroalimentaire doit être conforme au DTU 45.1- NF P 45-401, il en résulte que les matériaux ne doivent pas dégager d'odeur incompatibles avec les produits entreposés ou transformés.

Sources:

- DTU 45.1- NF P 45-401 article 3.6, et le tableau D.1.4
- * La bande entre immédiatement dans un four qui permet l'évaporation des solvants nécessaires à l'étalement du produit et la réticulation de la résine. Livre « De A à Z : Les profilés Minces en acier » SNPPA, 2007

5 Autres contributions du produit notamment par rapport à des préoccupations d'écogestion du bâtiment, d'économie et de politique environnementale globale

5.1 Ecogestion du bâtiment

5.1.1 Gestion de l'énergie

Les panneaux sandwich par leur haute performance thermique permettent de répondre aux exigences du Grenelle de l'environnement à savoir d'atteindre une consommation moyenne d'énergie du bâtiment de l'ordre de 50 kWh Ep/SHO-RT.

Le tableau ci-dessous indique des ordres de grandeurs de coefficient de transmission surfacique U_p d'un panneau sandwich de bardage à âme polyuréthanne :

Type de panneau sandwich	Nature de l'âme isolante	U _p (W/(m².K)(*)
Bardage industriel	Polyuréthanne	0.27
Bardage en ambiance Ai1 et Ai2	Polyuréthanne	0.15

(*) à la date de rédaction de la présente FDES, une amélioration des performances est en cours

Sources:

- Guide FFB/Ademe « construction métalliques réglementation thermique des bâtiments neufs de juin 2008»
- Gamme avis Techniques des adhérents du SNPPA

5.1.2 Gestion de l'eau

Le panneau sandwich ne contribue pas à la gestion de l'eau.

5.1.3 Entretien et maintenance

Les dispositions d'entretien et de maintenance sont définies dans les Avis Technique de chaque panneau. La surveillance et l'entretien des panneaux sandwich peuvent comprendre :

- une inspection régulière des parois et accessoires,
- l'enlèvement des débris divers et végétations, notamment des mousses et toutes matières incompatibles qui sont venues se déposer sur la surface du bardage,
- le nettoyage des parois à l'eau claire.

Source: Gamme des avis techniques des adhérents du SNPPA

Dans le cas de bardage agroalimentaire, il convient aussi de respecter les conditions définies dans le DTU 45-1 NF P 45-401-1 et NF P 45-401-2 d'octobre 2001 relatif aux ambiances AI1 et AI 2 pour le nettoyage courant à l'intérieur des

locaux ainsi que les conditions d'hygiène définie au paragraphe 3.6 hygiène de ce DTU.

Source: NF P 45-401-1 et NF P 45-401-2 d'octobre 2001 relatif aux ambiances AI1 et AI 2

5.2 Préoccupation économique

Le panneau sandwich est un produit adaptable. Il offre aux maitres d'ouvrage et aux architectes une liberté dans le choix de l'architecture tout en maitrisant les coûts de réalisation de l'ouvrage. L'apport du panneau vis-à-vis du grenelle de l'environnement est incontournable en terme d'isolation thermique (et donc de diminution de consommation d'énergie) notamment.

La mise en œuvre des panneaux sandwich en bardage est planifiée par calepinage de tous les produits. Ainsi seule la quantité nécessaire à la mise en œuvre est livrée. De plus, la livraison s'effectue en temps voulu pour le montage, limitant les besoins de stockage sur le chantier.

L'assemblage des panneaux sandwich est réalisé à l'aide de fixations traversantes dans le cas de bâtiments industriels et généralement non traversantes dans le cas de bâtiments agro-alimentaires. Ces modes d'assemblage réduisent les délais de mise en œuvre. De plus, ils nécessitent l'utilisation d'une main d'œuvre qualifiée et peu nombreuse et occasionnellement l'usage d'engin lourd de chantier.

Le panneau sandwich est une technique de construction sèche avec un temps de chantier court. Il contribue à assurer rapidement le clot du bâtiment.

Le panneau sandwich à deux parements acier permet de concevoir une architecture évolutive. L'ouvrage peut être agrandi, transformé ou adapté en fonction de nouveaux besoins, des nouvelles tendances et notamment des nouvelles normes d'usage.

En cas de réhabilitation du bâtiment et en fonction des nouvelles conditions d'exploitation, le panneau sandwich à deux parements acier peut être aisément remplacé (technique de remplacement d'un panneau définie dans les Avis techniques).

En fin de vie du bâtiment, le panneau sandwich est facilement démontable et le coût de déconstruction amorti par la valorisation des déchets de parements acier constitutifs des panneaux et aisément récupérable.

5.3 Politique environnementale globale

5.3.1 Ressources naturelles

Les panneaux sandwich de bardage sont produits à partir d'acier primaire (bobines prélaquées) dont la principale matière première est le minerai de fer et l'isolant thermique (la mousse polyuréthanne).

Concernant le minerai de fer, la taille du gisement mondial est importante par rapport à la consommation mondiale.

En fin de vie, les déchets de parements acier constitutifs des panneaux sandwich peuvent être recyclés indéfiniment soit par la filière intégrée (primaire) de l'acier soit majoritairement via la filière électrique. Le recyclage n'altère pas les propriétés physiques de l'acier. Ainsi, il est indéfiniment recyclable au prorata des taux de collecte et de recyclage. De ce fait, le recyclage des parements acier des panneaux sandwich permet d'économiser les ressources naturelles de minerais de fer.

5.3.2 Emissions dans l'air et dans l'eau

Deux tôles d'acier galvanisé revêtu d'une laque polyester 25µm ont fait l'objet d'une évaluation sanitaire des émissions

COV selon les protocoles AFFSET; AGBB et ECA.

Sources: Rapport d'essai°SB-08-080, CSTB, novembre 2008 – "Evaluation of VOC and formaldehyde emissions from 25 µm polyester pre-coated galvanized steel products according to the ECA, AgBB and AFSSET schemes"

Comportement au test chimique d'une tôle acier (bardage) prélaqué polyester 25 µm :

Corrosion	Tenue au brouillard salin = 500 heures Tenue à l'humidité = 1000 heures
Agent chimique	Acide et base: bon Acide nitrique : bon Huiles minérales : très bon Solvants aliphatiques : très bon Solvants aromatiques : bon Solvants cétoniques : faible Solvant chlorés : faible

5.3.3 Déchets

La mise en œuvre des panneaux sandwich est planifiée au préalable par calepinage de tous les produits. Ainsi seule la quantité nécessaire à la mise en œuvre est livrée. Sauf exception, le chantier de mise en œuvre ne génère que très peu de déchets de panneaux sandwich (ajustement d'ouverture).

En fin de vie, les parements d'acier sont récupérés et les isolants mis en décharge.

6 Annexe : Caractérisation des données pour le calcul de l'Inventaire de Cycle de Vie (ICV)

Cette annexe est issue du rapport d'accompagnement de la déclaration (cf. Introduction)

6.1 Définition du système d'ACV (Analyse de Cycle de Vie)

Description des flux pris en compte dans le cycle de vie du produit.

Pour chaque sous-étape du cycle de vie du panneau sandwich de bardage à âme polyuréthanne et à deux parements acier, les flux pris en compte sont :

- les consommations de matières premières (bobines d'acier, polyol et isocianate pour l'isolant, bois, carton, PE et acier pour l'emballage);
- les consommations de ressources énergétiques (électricité, gaz naturel, fioul léger) ;
- les consommations d'eau (principalement pour l'étape de vie en œuvre) ;
- les émissions dans l'air ;
- les rejets dans l'eau ;
- les générations de déchets valorisés et éliminés.

A la frontière du système étudié, les flux pris en compte sont ceux listés par la norme NF P 01-010.

6.1.1 Etapes et flux inclus

Production

La modélisation de l'étape de production prend en compte :

- la fabrication du produit sur sites (sources : sites de production pour les étapes de profilage et de mise en place de l'isolant) ;
- la production des bobines d'acier prélaqué (source : IISI) ;
- la production de polyol et d'isocianate entrant dans la composition de la mousse polyuréthanne (Source : PlasticEurope)
- la production des énergies consommées sur les sites de production (sources : fascicule AFNOR FD P 01-015) ;
- la production des matières premières autres que les bobines (sources : PlasticEurope, DEAM);
- le transport des matières premières (source : fascicule AFNOR FD P 01-015) ;
- la production des vis de fixation lors de l'étape de mise en œuvre (source : IISI).

Le profil environnemental de production de l'acier prélaqué fourni par l'IISI intègre le recyclage du bardage en fin de vie au module aciérie de la filière intégrée.

Transport

La modélisation de cette étape prend en compte la production et la combustion du diesel pour le transport du produit depuis le site de production vers le chantier de mise en œuvre.

Mise en œuvre

Cette étape prend en compte la fin de vie des emballages utilisés pour le conditionnement du produit.

Vie en œuvre

Cette étape prend en compte les opérations d'entretien (nettoyage à l'eau claire).

Fin de vie

La modélisation de l'étape de la fin de vie prend en compte :

- le transport des déchets depuis leur lieu de vie en œuvre jusqu'à leur lieu de fin de vie ;
- le pourcentage de produits valorisés en fin de vie ;
- la mise en décharge de l'isolant du produit étudié.

Le recyclage est intégré dans le module aciérie de la filière intégrée de production de l'acier.

6.1.2 Flux omis

La norme NF P01-010 permet d'omettre des frontières du système les flux suivants :

- l'éclairage, le chauffage et le nettoyage des ateliers
- le département administratif,
- le transport des employés,
- la fabrication de l'outil de production et des systèmes de transport (machines, camions, etc.).

6.1.3 Règle de délimitation des frontières

La norme NF P01-010 a fixé le seuil de coupure à 98% selon le paragraphe 4.5.1 de la norme.

Dans le cadre de cette déclaration, le pourcentage des flux remontés est supérieur à 99%.

A l'étape de production, les flux non pris en compte dans les tableaux de résultats sont ceux omis (voir §6.1.2). Aux frontières du système les flux non-remontés sont ceux du site de production ainsi que ceux des étapes amonts.

6.2 Sources de données

6.2.1 Caractérisation des données principales

Fabrication

Etape de profilage de la bobine d'acier en tôle de parement :

- Année: 2005
- Représentativité géographique : France
- Représentativité technologique : les données utilisées correspondent aux technologies standards employées pour la production du bardage simple peau en acier prélaqué
- Source : Arcelor Construction France, Bacacier, Corus Bâtiment et Systèmes Monopanel, Isocab France, NV Joris Ide

Etape de mise en place des isolants

- Année : 2008
- Représentativité géographique : France
- Représentativité technologique : les données utilisées correspondent aux technologies standards employées pour la mise en place des isolants sur site de production
- Source: ArcelorMittal Construction France, Plast'Europ Panelco SAS, Corus Bâtiment et Systèmes Monopanel,

ThyssenKruppSteel Isocab France, Dagard

Transport

• Année: 2008

• Représentativité géographique : France

- Représentativité technologique : représentatif du secteur du transport en France, conformément au fascicule AFNOR FD P 01-015
- Source : Les membres du SNPPA pour la distance, la norme NF P 01-010 pour la modélisation

Mise en œuvre et vie en oeuvre

• Année: 2008

• Zone géographique : France

Source : Les membres du SNPPA et les avis techniques des membres du SNPPA

Fin de vie

• Année: 2008

• Zone géographique : France

• Source:

- Distance de transport : Le SNPPA
- Pourcentage de produits valorisés en fin de vie de: LCA for Steel Construction, ECSC Final Report 7210 PR 116
- Impact de la mise en décharge : Arrêté du 9 septembre 1997 relatif aux installations de stockage de déchets ménagers et assimilés, modifié par les arrêtés du 31 décembre 2001 et du 3 avril 2002

6.2.2 Données énergétiques

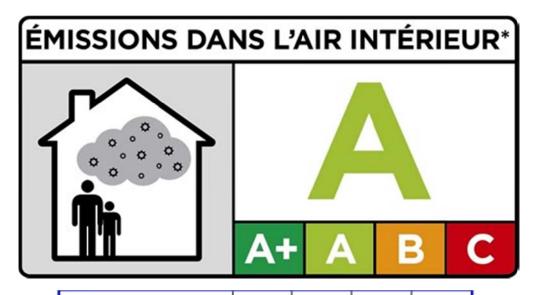
A renseigner si les données utilisées sont différentes de celles qui figurent dans le fascicule de document AFNOR FD P 01-015.

PCI des combustibles

Les données des différents combustibles sont celles du fascicule AFNOR FD P 01-015.

Modèle électrique

Site de production : France (fascicule AFNOR FD P 01-015)


6.2.3 Données non-ICV

- Rapport d'essai°SB-08-080, CSTB, novembre 2008 "Evaluation of VOC and formaldehyde emissions from 25 µm polyester pre-coated galvanized steel products according to the ECA, AgBB and AFSSET schemes"
- Norme AFNOR XP P 34-301 de novembre 2002
- Guides d'utilisation : GA A36-351 de septembre 2007, GA A36-335 de décembre 2005, GA A36-355 de mai 2005
- Normes NF EN 10 169-1 d'avril 2004, NF EN 10 169-2 de juillet 2006 et NF EN 10 169-3 de novembre 2003
- E-Cahier du CSTB cahier 3501, « Panneaux sandwich isolants à parements métalliques conditions générales de conceptions et fabrications », Mars 2004 art 2.5
- Guide FFB/Ademe « construction métalliques réglementation thermique des bâtiments neufs de juin 2008»
- DTU 45.1- NF P 45-401 article 3.6, et le tableau D.1.4
- Attestation d'aptitude au nettoyage de la plinthe PVC certifié par l'AFSSA
- Exemples de certificat d'aptitude au contact temporaire avec les denrées alimentaires concernant un joint film PVC en et la laque polyester

- Gamme avis Techniques des adhérents du SNPPA CF Chapitre 2 : partie Avis de chaque Avis Technique
- « En savoir plus sur le panneau sandwich », SNPPA
- Guide FFB/Ademe « construction métalliques réglementation thermique des bâtiments neufs de juin 2008»
- Gamme avis Techniques des adhérents du SNPPA
- Profil Info SNPPA Juin 2008
- Gamme acoustique des adhérents SNPPA
- REEF acoustique CSTB
- Les PV d'essais sont disponibles auprès des adhérents du SNPPA
- Normes NF EN 10 169-1 d'avril 2004, NF EN 10 169-2 de juillet 2006 et NF EN 10 169-3 de novembre 2003
- Gamme de revêtement polyester des adhérents du SNPPA
- NF EN-1991-1-5 de mai 2004, tableau 5.2
- DTU 45.1- NF P 45-401 article 3.6, et le tableau D.1.4
- La bande entre immédiatement dans un four qui permet l'évaporation des solvants nécessaires à l'étalement du produit et la réticulation de la résine. Livre « De A à Z : Les profilés Minces en acier » SNPPA, 2007

6.3 Traçabilité

L'inventaire de cycle de vie a été réalisé par Ecobilan en 2009 et l'agrégation des données relève de calculs issus du logiciel TEAMTM version 4.0.

CLASSES	С	В	Α	A +
Formaldéhyde	1 120	, 120	¸ 60	, 10
Acétaldéhyde	1 400	, 400	¸ 300	, 200
Toluène	1 600	, 600	, 4 50	, 300
Tétrachloroéthylène	1 500	₂ 500	_, 350	, 250
Xylène	1 400	, 400	₂ 300	, 200
1,2,4-Triméthylbenzène	1 2000	, 2000	_, 1500	, 1000
1,4-Dichlorobenzène	1 120	, 120	₂ 90	, 60
Ethylbenzène	¹ 1500	, 1500	, 1000	, 750
2-Butoxyéthanol	1 2000	, 2000	, 1500	, 1000
Styrène	1 500	, 500	, 350	, 250
COVT	1 2000	, 2000	, 1500	, 1000

Décrets, arrêtés, circulaires

TEXTES GÉNÉRAUX

MINISTÈRE DE L'ÉCOLOGIE, DU DÉVELOPPEMENT DURABLE, DES TRANSPORTS ET DU LOGEMENT

Décret nº 2011-321 du 23 mars 2011 relatif à l'étiquetage des produits de construction ou de revêtement de mur ou de sol et des peintures et vernis sur leurs émissions de polluants volatils

NOR: DEVL1101903D

Publics concernés: fabricants, importateurs, distributeurs de produits de construction et de décoration, entreprises de construction, acheteurs de tels produits.

Objet : étiquetage des produits de construction ou de revêtement de mur ou de sol et des peintures et vernis relatif à leurs émissions de polluants volatils.

Entrée en vigueur:

- pour les produits mis à disposition sur le marché à compter du 1er janvier 2012 : 1er janvier 2012 ;
- pour les produits mis à disposition sur le marché avant le 1er janvier 2012 : 1er septembre 2013.

Notice: le décret instaure l'obligation d'indiquer sur une étiquette, placée sur le produit ou son emballage, ses caractéristiques d'émission, une fois mis en œuvre, en substances volatiles polluantes.

Il s'agit d'une autodéclaration. Le fabricant est responsable de l'exactitude des informations mentionnées sur l'étiquette, qu'il obtient par le moyen de son choix.

Les modalités de présentation de l'étiquette et les substances polluantes concernées sont précisées dans un arrêté.

Références: les textes modifiés par le présent décret peuvent être consultés, dans leur rédaction issue de cette modification, sur le site Légifrance (http://www.legifrance.gouv.fr).

Le Premier ministre,

Sur le rapport de la ministre de l'écologie, du développement durable, des transports et du logement,

Vu la directive 98/34/CE du Parlement européen et du Conseil du 22 juin 1998 prévoyant une procédure d'information dans le domaine des normes et réglementations techniques et des règles relatives aux services de la société de l'information, et la notification n° 2009/701/F;

Vu le code pénal, notamment son article R. 610-1;

Vu le code de l'environnement, notamment son article L. 221-10;

Vu le décret nº 92-647 du 8 juillet 1992 modifié concernant l'aptitude à l'usage des produits de construction :

Le Conseil d'Etat (section des travaux publics) entendu,

Décrète :

Art. 1er. – Après la section 4 du chapitre I^{er} du titre II du livre II du code de l'environnement (partie réglementaire) est ajoutée une section 5 ainsi rédigée :

« Section 5

« Qualité de l'air intérieur

« Sous-section 1

« Etiquetage des produits de construction ou de revêtement de mur ou de sol et des peintures et vernis sur leurs émissions de polluants volatils

« Art. R. 221-22. - Au sens de la présente sous-section, on entend par :

- « "produits de construction" : les produits définis au premier alinéa de l'article 1er du décret nº 92-647 du 8 juillet 1992 concernant l'aptitude à l'usage des produits de construction ;
- « "Polluant volatil": substance susceptible d'avoir des effets nocifs sur la santé humaine et qui se trouve en phase gazeuse dans l'air intérieur dans des conditions normales de température et de pression atmosphérique;
- « "mise à disposition sur le marché": fourniture d'un produit destiné à être distribué sur le marché dans le cadre d'une activité commerciale à titre onéreux ou gratuit. Ne sont pas mis à disposition sur le marché les produits fabriqués sur chantier ainsi que les produits incorporés directement par le fabricant.
- « Art. R. 221-23. Les dispositions de la présente sous-section s'appliquent aux produits suivants lorsqu'ils sont destinés, exclusivement ou non, à un usage intérieur :
 - « revêtements de sol, mur ou plafond ;
 - « cloisons et faux plafonds ;
 - « produits d'isolation ;
 - « portes et fenêtres ;
 - « produits destinés à la pose ou à la préparation des produits mentionnés au présent article.
- « Elles ne s'appliquent pas aux produits composés exclusivement de verre non traité ou de métal non traité, ni aux produits de serrure, ferrure ou de visserie.
- « Art. R. 221-24. Les produits mentionnés à l'article R. 221-23 ne peuvent être mis à disposition sur le marché que s'ils sont accompagnés d'une étiquette, placée sur le produit ou son emballage, indiquant les caractéristiques d'émission en polluants volatils du produit une fois incorporé dans l'ouvrage ou appliqué sur une surface.
- « Les mentions de l'étiquette sont rédigées de manière facilement compréhensible, en langue française et sans autres abréviations que celles prévues par la réglementation ou les conventions internationales. Elles peuvent figurer dans une ou plusieurs autres langues.
- « Art. R. 221-25. Les dispositions de la présente sous-section ne font pas obstacle à la commercialisation des produits légalement fabriqués ou commercialisés dans un autre Etat membre de l'Union européenne ou en Turquie, ou légalement fabriqués dans un Etat partie à l'accord instituant l'Espace économique européen, dans la mesure où ceux-ci sont accompagnés d'une information équivalente à celle exigée par le présent décret concernant les caractéristiques d'émissions en polluants volatils du produit une fois incorporé dans l'ouvrage ou appliqué sur une surface.
- « Art. R. 221-26. Un arrêté des ministres chargés de la construction, du logement, de l'environnement, de la santé et de l'industrie précise les modalités de présentation de l'étiquette. Il définit notamment des classes en fonction des niveaux d'émission en polluants volatils du produit.
- « Art. R. 221-27. L'arrêté mentionné à l'article 221-26 établit la liste des polluants volatils devant être pris en compte pour caractériser l'émission du produit.
- « Cette liste est déterminée, parmi les polluants visés par l'Organisation mondiale de la santé, sur la base de leurs risques de toxicité par inhalation et de leur fréquence d'occurrence dans les bâtiments.
 - « L'arrêté définit pour chaque polluant volatil les seuils correspondants à la définition des classes.
- « Art. R. 221-28. La personne physique ou morale responsable de la mise à disposition sur le marché est responsable des informations figurant sur les étiquettes.
- « Elle tient à la disposition des agents chargés du contrôle une description générale du produit, des méthodes ainsi que les documents par lesquels il justifie les performances déclarées. »
- **Art. 2. –** I. Le paragraphe 7 du chapitre VI du titre II du livre II du code de l'environnement (partie réglementaire) devient le paragraphe 8 et l'article R. 226-14 de ce code devient l'article R. 226-15.
- II. Le paragraphe 7 du chapitre VI du titre II du livre II du code de l'environnement (partie réglementaire) est remplacé par les dispositions suivantes :

« Paragraphe 7

« Etiquetage des produits de construction ou de revêtement de mur ou de sol et des peintures et vernis sur leurs émissions de polluants volatils

- « Art. R. 226-14. Est puni de la peine d'amende prévue pour les contraventions de la cinquième classe le fait de mettre à disposition sur le marché des produits ne respectant pas les prescriptions de l'article R. 221-24. »
- **Art. 3.** Les dispositions du présent décret s'appliquent à compter du 1^{er} janvier 2012. Toutefois, elles s'appliquent à compter du 1^{er} septembre 2013 aux produits mis à disposition sur le marché avant cette date.
- Art. 4. La ministre de l'écologie, du développement durable, des transports et du logement, le garde des sceaux, ministre de la justice et des libertés, la ministre de l'économie, des finances et de l'industrie, le

ministre du travail, de l'emploi et de la santé et le secrétaire d'Etat auprès de la ministre de l'écologie, du développement durable, des transports et du logement, chargé du logement, sont chargés, chacun en ce qui le concerne, de l'exécution du présent décret, qui sera publié au *Journal officiel* de la République française.

Fait le 23 mars 2011.

François Fillon

Par le Premier ministre:

La ministre de l'écologie, du développement durable, des transports et du logement, NATHALIE KOSCIUSKO-MORIZET

> Le garde des sceaux, ministre de la justice et des libertés, MICHEL MERCIER

La ministre de l'économie, des finances et de l'industrie, Christine Lagarde

> Le ministre du travail, de l'emploi et de la santé, Xavier Bertrand

Le secrétaire d'Etat
auprès de la ministre de l'écologie,
du développement durable,
des transports et du logement,
chargé du logement,
BENOIST APPARU

JORF n°0111 du 13 mai 2011 page 8284 texte n° 15

ARRETE

Arrêté du 19 avril 2011 relatif à l'étiquetage des produits de construction ou de revêtement de mur ou de sol et des peintures et vernis sur leurs émissions de polluants volatils

NOR: DEVL1104875A

La ministre de l'écologie, du développement durable, des transports et du logement, la ministre de l'économie, des finances et de l'industrie et le ministre du travail, de l'emploi et de la santé, Vu la directive 98/34/CE du Parlement européen et du Conseil du 22 juin 1998 prévoyant une procédure d'information dans le domaine des normes et réglementations techniques et des règles relatives aux services de la société de l'information, et notamment la notification n° 2009/702/F; Vu le code de l'environnement, notamment ses articles L. 221-10 et R. 221-22 à R. 221-28, Arrêtent :

Article 1

Au sens du présent arrêté, on entend par :

- 1. « Composé organique » : tout composé contenant au moins l'élément carbone et un ou plusieurs des éléments suivants : hydrogène, oxygène, soufre, phosphore, silicium, azote, ou un halogène, à l'exception des oxydes de carbone et des carbonates et bicarbonates inorganiques ;
- 2. « Composé organique volatil (COV) » : tout composé organique dont le point d'ébullition initial se situe entre 50 °C et 286 °C ;
- 3. « Composés organiques volatils totaux (COVT) » : somme des composés organiques volatils dont l'élution se produit entre le n-hexane et le n-hexadécane inclus, qui est détectée selon la méthode de la norme ISO 16000-6.

Article 2

Les substances ou groupes de substances composant la liste définie à l'article R. 221-27 du code de l'environnement sont les suivantes : 1° Formaldéhyde (numéro CAS: 50-00-0); 2º Acétaldéhyde (numéro CAS: 75-07-0); 3° Toluène (numéro CAS: 108-88-3) 4º Tetrachloroéthylène (numéro CAS: 127-18-4); 5° Xylène (numéro CAS : 1330-20-7) 6° 1,2,4-triméthylbenzène (numéro CAS: 95-63-6); 7° 1,4-dichlorobenzène (numéro CAS: 106-46-7); 8° Ethylbenzène (numéro CAS: 100-41-4); 9° 2-Butoxyéthanol (numéro CAS: 111-76-2); 10° Styrène (numéro CAS: 100-42-5); 11° Composés organiques volatils totaux (COVT). Les caractéristiques d'émissions de substances sont formalisées selon une échelle de quatre classes, de A+ à C, la classe A+ indiquant un niveau d'émission très peu élevé, la classe C, un niveau d'émission élevé. Le niveau d'émission est indiqué par la concentration d'exposition, exprimée en μg.m-3. Pour chaque substance ou groupe de substances, les scénarios d'émissions, la méthode de caractérisation des émissions, la méthode de mesure de la concentration d'exposition, les valeurs limites et les classes correspondantes sont mentionnés à l'annexe I.

Article 3

L'étiquette prévue à l'article R. 221-24 du code de l'environnement est conforme au modèle figurant à l'annexe II. Elle doit être accompagnée du texte suivant écrit en caractères lisibles : « * Information sur le niveau d'émission de substances volatiles dans l'air intérieur, présentant un risque de toxicité par inhalation, sur une échelle de classe allant de A+ (très faibles émissions) à C (fortes émissions) ».

Article 4

Le directeur de l'habitat, de l'urbanisme et des paysages, le directeur général de la prévention des risques, le directeur général de la compétitivité de l'industrie et des services et le directeur général de la santé sont chargés, chacun en ce qui le concerne, de l'exécution du présent arrêté, qui sera publié au Journal officiel de la République française.

Annexe

ANNEXES

A. - Méthode de caractérisation des émissions dans l'air intérieur

PARAMÈTRE	MÉTHODE	DATE de publication
Echantillonnage et préparation des éprouvettes d'essai	NF EN ISO 16000-11	2006
Méthode de la chambre d'essai d'émission	NF EN ISO 16000-9	2006
Méthode de la cellule d'essai d'émission	NF EN ISO 16000-10	2006

Lorsqu'un produit fait l'objet d'une norme française ou harmonisée et que celle-ci impose ou renvoie à une autre méthode de caractérisation des émissions pour une ou plusieurs substances, cette méthode peut être utilisée en lieu et place des méthodes visées ci-dessus pour la ou les substances concernées.

B. - Méthode de mesure des concentrations d'exposition

PARAMÈTRE	UNITÉ	MÉTHODE	DATE de publication
Prélèvements et analyse : COVT, toluène, xylène, tetrachloroéthylène, 1,2,4-triméthylbenzène, 1,4- dichlorobenzène, éthylbenzène, 2-butoxyéthanol, styrène	μg.m−³	NF ISO 16000-6	2004
Prélèvement et analyse : formaldéhyde, acétaldéhyde	μg.m— ³	NF ISO 16000-3	2001

Lorsqu'un produit fait l'objet d'une norme française ou harmonisée et que celle-ci impose ou renvoie à une autre méthode de mesure des concentrations d'exposition pour une ou plusieurs substances, cette méthode peut être utilisée en lieu et place des méthodes visées ci-dessus pour la ou les substances concernées.

C. - Scénarios d'émissions

Les concentrations d'exposition sont calculées dans une pièce de référence conventionnelle d'un volume total (V) de 30 m³, à l'intérieur de laquelle on applique un taux de renouvellement de l'air (n) de 0,5 h-1

et dont les dimensions sont précisées ci-dessous :

2 1	SURFACE (S) (en m²)	TAUX DE CHARGE (L = S/V) (en m²/m³)	DÉBIT D'ÉMISSION spécifique surfacique (q = n/L) (en m³.m-².h-¹)
Sol	12	0,4	1,25
Plafond	12	0,4	1,25
1 porte	1,6	0,05	10
1 fenêtre	2	0,07	7
Murs (moins fenêtre et porte)	31,4	1	0,5
Joints (ou très petites surfaces)	0,2	0,007	70

Lorsqu'un produit est destiné à plusieurs types de surface, on prendra en compte la surface la plus importante.

D. — Seuils limites des concentrations d'exposition (en μ g.m 3) et classes correspondantes

Les classes d'émission sont établies sur la base de mesures réalisées après vingt-huit jours en chambre ou en cellule d'essai d'émission, ou avant ce délai si les émissions respectent les exigences de la classe

des émissions les plus faibles (A+)

CLASSES	С	В	A	A+
Formaldéhyde	¹ 120	, 120	₂ 60	, 10
Acétaldéhyde	1 400	, 400	, 300	, 200
Toluène	1 600	, 600	, 450	, 300
Tétrachloroéthylène	1 500	, 500	₂ 350	, 250
Xylène	1 400	, 400	¸ 300	, 200
1,2,4-Triméthylbenzène	1 2000	, 2000	, 1500	, 1000
1,4-Dichlorobenzène	¹ 120	, 120	ر 90	ر 60
Ethylbenzène	¹ 1500	, 1500	, 1000	, 750
2-Butoxyéthanol	¹ 2000	, 2000	, 1500	, 1000
Styrène	¹ 500	, 500	₂ 350	, 250
COVT	¹ 2000	, 2000	, 1500	, 1000

ANNEXEII

- 1. L'étiquette comporte les indications ci-dessous :
- l'intitulé « Emissions dans l'air intérieur » suivi d'un astérisque renvoyant au texte visé à l'article 3;
- un pictogramme et une échelle de classe ;
- une lettre en grand format correspondant à la classe la plus pénalisante obtenue parmi les substances ou le COVT selon les modalités prévues à l'annexe I.
- 2. L'étiquette est d'une taille minimum de 15 mm × 30 mm et est conforme à l'un des deux modèles suivants:

Modèle 1 en couleurs :

Vous pouvez consulter le tableau dans le JOnº 111 du 13/05/2011 texte numéro 15

Les couleurs devant être utilisées pour l'impression de l'étiquette sont les suivantes :

- pour le fond entourant le pictogramme : 0 % cyan, 0 % magenta, 0 % jaune, 20 % noir ;
- pour le nuage présent dans le pictogramme : 0 % cyan, 0 % magenta, 0 % jaune, 40 % noir ;
- pour la classe A+: 100 % cyan, 0 % magenta, 100 % jaune, 0 % noir;

 pour la classe A: 50 % cyan, 0 % magenta, 100 % jaune, 0 % noir;

 pour la classe B: 0 % cyan, 50 % magenta, 100 % jaune, 0 % noir;

 pour la classe B: 0 % cyan, 50 % magenta, 100 % jaune, 0 % noir;

- pour la classe C: 0 % cyan, 100 % magenta, 100 % jaune, 0 % noir.

La lettre en grand format est imprimée dans la couleur correspondant à la classe sur fond blanc. Sur l'échelle de classe, les lettres apparaissent en défonce blanche sur un aplat de la couleur correspondant à la classe.

Le reste de l'étiquette est imprimé en noir sur fond blanc.

Modèle 2 en noir et blanc :

Vous pouvez consulter le tableau dans le JOnº 111 du 13/05/2011 texte numéro 15

Les nuances de gris devant être utilisées pour l'impression de l'étiquette sont les suivantes :

- pour le fond entourant le pictogramme : 20 % noir ;
- pour le nuage présent dans le pictogramme : 40 % noir ;
- pour la lettre en grand format : 90 % noir ;
- pour la classe A+ : 40 % noir ;pour la classe A : 60 % noir ;
- pour la classe B : 80 % noir ;pour la classe C : 90 % noir.

La lettre en grand format est toujours imprimée en 90 % noir sur fond blanc.

Sur l'échelle de classe, les lettres apparaissent en défonce blanche sur un aplat du pourcentage de noir correspondant à la classe.

Le reste de l'étiquette est imprimé en noir sur fond blanc.

Pour une impression monochrome, le modèle 2 sera utilisé en remplaçant le noir par n'importe quelle autre couleur lisible, à condition de respecter les pourcentages.

ANNEXEIII **BIBLIOGRAPHIE**

ISO 16000-3:2001. — Air intérieur. — Partie 3 : dosage du formaldéhyde et d'autres composés carbonylés. - Méthode par échantillonnage actif.

ISO 16000-6:2004. — Air intérieur. — Partie 6 : dosage des composés organiques volatils dans l'air intérieur des locaux et enceintes d'essai par échantillonnage actif sur le sorbant Tenax TA, désorption

thermique et chromatographie en phase gazeuse utilisant MS/FID. EN ISO 16000-9:2006. — Air intérieur. — Partie 9 : dosage de l'émission de composés organiques volatils de produits de construction et d'objets d'équipement. — Méthode de la chambre d'essai d'émission. EN ISO 16000-10:2006. — Air intérieur. — Partie 10 : dosage de l'émission de composés organiques volatils de produits de construction et d'objets d'équipement. — Méthode de la cellule d'essai d'émission. EN ISO 16000-11:2006. — Air intérieur. — Partie 11 : dosage de l'émission de composés organiques volatils de produits de construction et d'objets d'équipement. - Echantillonnage, conservation des échantillons et préparation d'échantillons pour essai.

Fait le 19 avril 2011.

La ministre de l'écologie,

du développement durable,

des transports et du logement, Pour la ministre et par délégation :

Le directeur

de l'habitat,

de l'urbanisme

et des paysages,

E. Crépon

Le directeur général

de la prévention des risques,

L. Michel

La ministre de l'économie,

des finances et de l'industrie,

Pour la ministre et par délégation :

Par empêchement du directeur général

de la compétitivité, de l'industrie

et des services :

Le chef du service industrie,

Y. Robin

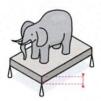
Le ministre du travail,

de l'emploi et de la santé,

Pour le ministre et par délégation :

Le directeur général de la santé,

D. Houssin

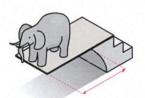

PAS DE BÂTIMENTS SANS MÉTAUX

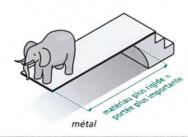
En raison de leurs propriétés intrinsèques, les métaux sont couramment employés dans la construction. Ils constituent en effet des matériaux de prédilection pour les structures, les armatures et autres renforcements, les bardages, les couvertures, les ouvrages de plomberie, les menuiseries, les équipements de chauffage et bien d'autres applications encore. On trouve des métaux dans les bâtiments anciens comme dans les nouveaux, dans les constructions historiques comme dans les plus modernes.

Trois attributs des métaux en font les alliés incontournables des bâtiments :

ÉCONOMIE DE MATIÈRE

En raison de leur haute résistance, les métaux peuvent supporter des charges importantes avec moins de matière ou servir de renfort à d'autres matériaux.

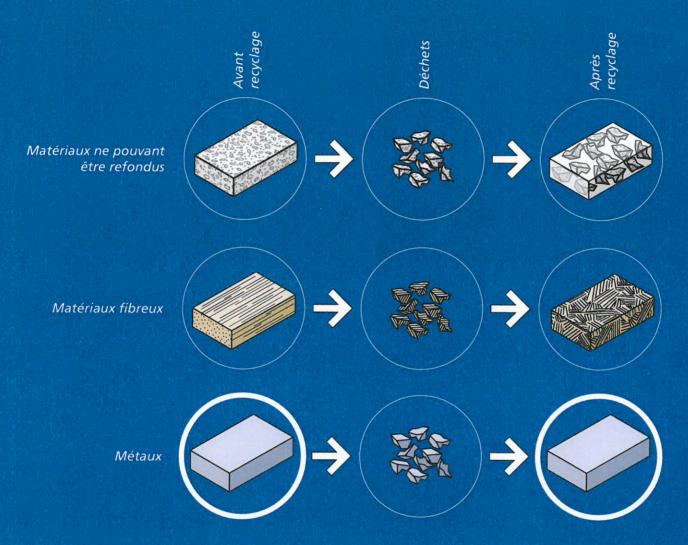

matériau non métallique


métal

LIBERTÉ DE CONCEPTION

Grâce à une rigidité plus élevée, les métaux ont une portée supérieure laissant une plus grande liberté de création.

matériau non métallique



DURABILITÉ

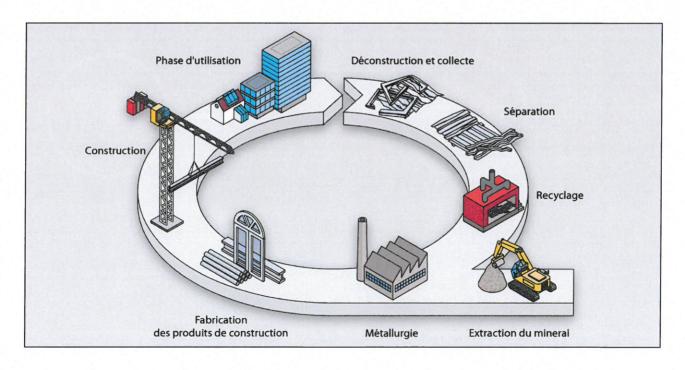
Munis d'un traitement de surface approprié le cas échéant, les produits de construction métalliques résistent à la fois aux intempéries, aux séismes, à la corrosion et aux UV, gage d'une très longue durée d'utilisation, sans détérioration.

tional Polar Foundation - René Robert

Les métaux sont recyclés sans altération de leurs qualités. Les liaisons métalliques se rétablissent lors de la resolidification permettant aux métaux de recouvrer leurs propriétés originales, même après plusieurs boucles de recyclage. Ceci permet de les réemployer indéfiniment pour la même application. A l'inverse, les performances de la plupart des matériaux non métalliques se trouvent dégradées après recyclage.

LES MÉTAUX RESTENT DES

MÉTAUX


LES MÉTAUX : RÉEMPLOI ET RECYCLAGE

Lorsqu'un bâtiment arrive en fin de vie, une part considérable des produits métalliques qu'il contient peut être directement réemployée, comme cela se produit couramment avec les bâtiments à charpente métallique. La flexibilité et l'adaptabilité de ces éléments de construction permettent d'en prolonger la durée de service.

Lorsqu'un produit métallique utilisé en construction arrive en fin de vie, il peut être recyclé dans sa totalité. Aujourd'hui déjà, plus de 95 % des produits métalliques utilisés dans les bâtiments sont récupérés à la fin de leur cycle de vie. Les petites et moyennes entreprises jouent un rôle clé dans la ré-

cupération des produits de construction contenant des métaux et leur traitement en amont des installations de recyclage. Le principal moteur de cette récupération et de ce recyclage systématiques réside dans la valeur économique élevée des métaux. Selon le métal constitutif du produit métallique, le recyclage permet, par comparaison avec la production primaire, des économies d'énergie allant de 60 % à 95 % : une situation bénéfique à la fois à l'économie et à l'environnement.

Le réemploi comme le recyclage des produits de construction métalliques permettent d'économiser les ressources naturelles.

4 COMMENT MESURER AU MIEUX LA RECYCLABILITÉ DES MÉTAUX

Des approches pertinentes pour mesurer la recyclabilité des métaux sont nécessaires à tous les niveaux : les gouvernements en ont besoin pour mieux appréhender les marchés des produits métalliques, l'industrie pour identifier le potentiel de progression du recyclage, les organismes de contrôle pour mesurer le taux de réalisation des objectifs législatifs en matière de déchets et de recyclage. les universitaires pour les analyses systémiques et les experts en développement durable pour évaluer l'impact environnemental des produits. Aujourd'hui, deux indicateurs sont généralement employés : le contenu recyclé et le taux de recyclage en fin de vie.

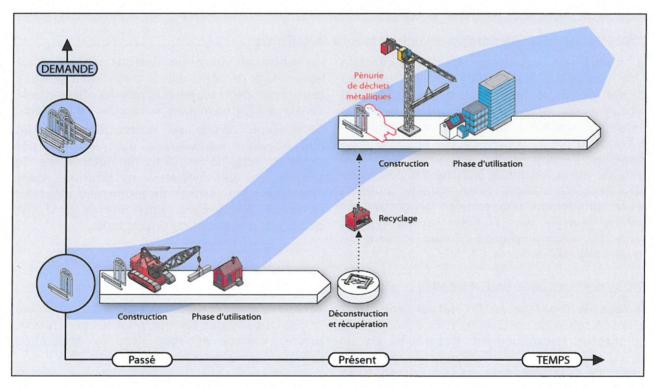
CONTENU RECYCLÉ: inapproprié pour les produits métalliques

La notion de «contenu recyclé» s'intéresse à la proportion de matière recyclée qui est utilisée lors de la fabrication d'un produit. Cet indicateur qui intervient au début de la chaîne d'approvisionnement peut être pertinent dans le cas de produits contenant des matières pour lesquelles l'industrie du recyclage n'est pas rentable et/ou lorsque le marché est immature. Dans ces circonstances, exiger que les produits neufs contiennent une certaine proportion de matière recyclée peut stimuler le recyclage de matériaux ou de produits qui, sinon, seraient mis en décharge ou incinérés.

Par contre, cet indicateur n'est pas pertinent pour les produits de construction métalliques puisque ceux-ci sont déjà récupérés et recyclés efficacement dans le cadre d'un marché du recyclage bien établi. Le contenu recyclé ne reflète donc pas les performances intrinsèques du recyclage des produits métalliques dans le secteur de la construction. Cet indicateur ne pourrait donc servir que pour refléter la proportion movenne de métal recyclé dans l'ensemble de la chaîne d'approvisionnement correspondante.

TAUX DE RECYCLAGE EN FIN DE VIE : le plus approprié pour les produits métalliques

Le taux de recyclage en fin de vie compare la quantité réelle de métaux recyclés à la quantité de métaux théoriquement disponibles en fin de vie d'un produit. En intégrant les pertes au niveau de la récupération, de la préparation des déchets et de leur refonte, il reflète directement les performances en matière de recyclage pour un produit métallique donné, indépendamment de la progression du marché et de la durée de vie du produit. C'est par conséquent l'indicateur le plus juste pour les produits métalliques utilisés dans les


bâtiments lorsqu'on veut préserver au maximum la disponibilité des métaux pour les générations futures, comme expliqué dans la déclaration commune sur le recyclage, publiée en 2006.

Cet indicateur est largement accepté par la communauté scientifique (PNUE/SETAC, ILCD). Il est conforme à l'approche retenue par les milieux universitaires (Université de Yale) et il est utilisé par des experts mondialement reconnus (Groupe d'experts sur la gestion durable des ressources du PNUE).

« CONTENU RECYCLÉ » ET « TAUX DE RECYCLAGE » : POURQUOI PEUVENT-ILS DIFFÉRER?

Les quantités que nous recyclons aujourd'hui sont limitées par ce que nous avons produit par le passé. L'essor rapide et soutenu de l'utilisation des métaux depuis de nombreuses années et la durée de vie des produits métalliques se comptant en décennies sont à la source d'un approvisionnement limité de déchets métalliques provenant des bâtiments. La

matière recyclée étant insuffisante pour satisfaire une demande croissante, de la matière vierge doit être introduite dans la chaîne d'approvisionnement. Ainsi, en dépit d'une récupération et d'un recyclage performants des produits métalliques en fin de vie, particulièrement dans le secteur de la construction, le contenu recyclé demeure encore relativement faible.

Par conséquent, le contenu recyclé ne constitue pas un indicateur approprié pour prévoir aujourd'hui quel sera demain le produit dont les performances de recyclage seront les meilleures. L'évaluation environnementale d'un produit, lorsqu'elle utilise le contenu recyclé comme indicateur au stade de la production, doit être dès lors complétée par des informations relatives à la phase de recyclage en fin de vie. Alors seulement la société et les organismes de contrôle auront une vision complète de l'ensemble du cycle de vie du produit métallique en question.

ENCOURAGER LE RECYCLAGE DE DEMAIN

Compte tenu de leur intérêt économique, la récupération et le recyclage des métaux atteignent déjà des niveaux élevés. Néanmoins, il existe encore des possibilités pour améliorer le rendement aux différents niveaux de la chaîne de valorisation des produits métalliques.

Parallèlement aux études menées par les industries, des projets conjoints sont en cours avec des instituts de recherche et des universités afin d'évaluer les pertes tout au long du cycle de vie et de voir comment les minimiser. Ce travail aidera à mieux comprendre ce secteur d'activité complexe et à définir des mesures adéquates pour améliorer encore le recyclage des métaux.

La présente publication a été élaborée par «METALS FOR BUILDINGS», qui regroupe au sein d'une alliance les principales associations européennes des métaux, actives dans le secteur de la construction, dont l'objectif est de promouvoir les atouts uniques des produits métalliques pour des bâtiments recyclables et conformes aux critères du développement durable.

www.metalsforbuildings.eu

MANUTENTION — STOCKAGE DES PANNEAUX SANDWICH DE BARDAGE EN POLYURETHANE:

Extrait des Recommandations Professionnelles Bardages en panneaux sandwich à deux parements en acier et à âme polyuréthane, Rage 2012

B19, B20, B23, B24

6.6. • Approvisionnement et stockage

Les colis doivent être transportés et stockés dans des conditions qui préservent les produits de l'humidité.

6.6.1. • Principe

Le déchargement et la manutention doivent s'effectuer sans entraîner :

- de déformation permanente des panneaux;
- de dégradation risquant d'affecter la résistance à la corrosion des matériaux et l'esthétique de la façade.

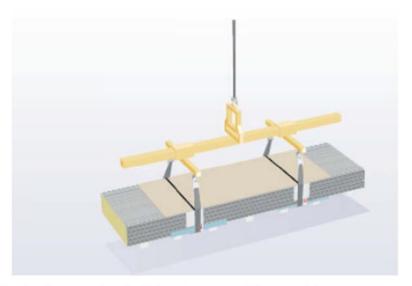
6.6.2. • Déchargement

Pour les emballages allant jusqu'à 6 m de longueur, il est possible d'utiliser pour le déchargement un chariot élévateur.

Au-delà de 6 m, il est recommandé d'utiliser une grue. Dans ce cas, le levage doit impérativement être effectué avec un palonnier à 2 ou 4 traverses. Dans ce cas, il y a lieu d'utiliser des élingues plates de largeur minimale 150 mm.

6.6.3. • Manutention

6.6.3.1. • Manutention des colis

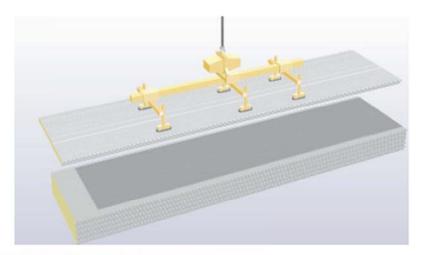

Pour la manutention des paquets par chariots élévateurs, il est nécessaire :

- de protéger les rives et le dessous des paquets,
- de soulever les colis en évitant le frottement de l'extrémité du colis sur celui du dessous.

Lors de la manutention des colis par palonnier, des élingues plates de largeurs minimales 150 mm sont conseillées (Figure 12).

Un bois rigide sera disposé au droit de l'élingage afin d'éviter toute détérioration des produits.

En aucun cas le porte-à-faux ne devra dépasser l'entraxe des points d'élingage.



▲ Figure 12: Manutention par palonnier à deux traverses et élingues plates

6.6.3.2. • Manutention des panneaux

La manutention des panneaux nécessite de prendre les précautions d'usage suivantes afin de ne pas les endommager (manutention sur chantier....):

- ils ne doivent pas être soumis aux chocs ou griffés, ni subir des déformations les rendant impropres à la bonne exécution des travaux;
- pour tout panneau de masse supérieure à 70 kg, l'emploi d'un matériel type palonnier à ventouse est recommandé (Figure 13);
- le palonnier doit être centré par rapport au centre de gravité du panneau;
- si le panneau comporte un film de protection, ce dernier doit être enlevé avant utilisation d'un palonnier à ventouse;
- la manipulation des panneaux se fera en évitant la prise des panneaux par leurs rives et, de préférence, à chant avec le côté mâle vers le bas;
- de plus, pour les panneaux relativement longs par rapport à leur épaisseur (L > 100 fois l'épaisseur), il est impératif de les basculer sur chant pour éviter leur ruine.

▲ Figure 13: Manutention par palonnier à ventouses

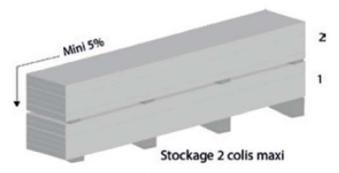
6.6.4. • Stockage sur chantier

L'attention du maître d'œuvre est attirée sur l'importance que revêt la définition, par les Documents Particuliers du Marché, des lieux de stockage, des dépôts de répartition et des possibilités de levage qui doivent être pris en compte par l'entrepreneur.

Le stockage des colis doit être fait sous abri ventilé (bâches, etc.). Le choix de cet emplacement devra, en outre, tenir compte de l'incompatibilité de certains matériaux employés avec l'humidité, des vapeurs nocives ou autres matériaux pouvant s'y trouver.

Ne pas superposer plus de 2 paquets.

Les Documents Particuliers du Marché précisent les dispositions prévues pour ces stockages (bâche ou similaire). Sinon, ces dispositions sont arrêtées d'un commun accord entre le maître d'œuvre et le « bardeur ».


Les modifications et les changements de lieux de stockage sur chantier sont à éviter, en raison des dégradations éventuelles possibles.

Les colis doivent être inclinés par rapport à l'horizontale pour faciliter l'évacuation d'eau de pluie et des condensats éventuels. (Figure 14).

De plus ils doivent être éloignés du sol par l'intermédiaire d'un calage au droit de chaque montant vertical du colis, ménageant ainsi un espace suffisant pour permettre une bonne aération et éviter une déformation permanente des panneaux. L'altération superficielle des revêtements sera ainsi évitée.

Des dispositifs appropriés, horizontaux ou verticaux, évitant toute déformation permanente, pendant une courte durée et préservant également de la condensation à l'intérieur des paquets seront prévus.

Pour les emballages maritimes, des précautions supplémentaires devront être prises : aérer les colis, protéger les produits des intempéries et des rayons UV.

▲ Figure 14: Stockage des panneaux sur chantier

La pelabilité du film de protection est de 1 mois à compter de la date demandée de mise à disposition et d'une semaine à compter de la pose. Attention, dans le cas d'utilisation d'un palonnier à ventouse, le film doit être retiré au moins à l'endroit des ventouses.

Le Film de protection qui recouvre les panneaux sandwich à parements prélaqué ou en tôle d'acier inoxydable doit être enlevé au plus tard 1 mois après l'expédition d'usine dans le cas de livraison sur chantier. EPAQ : Marques de qualité permettant notamment d'avoir des performances certaines au sens des Recommandations Professionnelles Bardages en panneaux sandwich à deux parements en acier et à âme polyuréthane, Rage 2012

B19, B20, B23, B24

Marque de qualité EPAQ pour la certification niveau 1 des performances mécaniques

1.2. Système 1

- a) Le fabricant effectue:
 - i) un contrôle de la production en usine;
 - ii) des essais complémentaires sur des échantillons prélevés par lui dans l'établissement de fabrication conformément au plan d'essais prescrit.
- b) L'organisme notifié de certification des produits décide de délivrer, de soumettre à des restrictions, de suspendre ou de retirer le certificat de constance des performances du produit de construction en fonction des résultats des évaluations et vérifications suivantes effectuées par lui:
 - i) une évaluation des performances du produit de construction fondée sur des essais (y compris l'échantillonnage), des calculs, des valeurs issues de tableaux ou sur la documentation descriptive du produit;
 - ii) une inspection initiale de l'établissement de fabrication et du contrôle de la production en usine;
 - iii) une surveillance, une évaluation et une appréciation continues du contrôle de la production en usine.

http://www.ppa-europe.eu/quality.html

Marque de qualité ACERMI/ACERMI tremplin pour la certification des performances thermiques

http://www.acermi.com/

Marquage CE niveau 1 pour la certification de la performance de réaction au feu

1.2. Système 1

- a) Le fabricant effectue:
 - i) un contrôle de la production en usine;
 - ii) des essais complémentaires sur des échantillons prélevés par lui dans l'établissement de fabrication conformément au plan d'essais prescrit.
- b) L'organisme notifié de certification des produits décide de délivrer, de soumettre à des restrictions, de suspendre ou de retirer le certificat de constance des performances du produit de construction en fonction des résultats des évaluations et vérifications suivantes effectuées par lui:
 - une évaluation des performances du produit de construction fondée sur des essais (y compris l'échantillonnage), des calculs, des valeurs issues de tableaux ou sur la documentation descriptive du produit;
 - ii) une inspection initiale de l'établissement de fabrication et du contrôle de la production en usine;
 - iii) une surveillance, une évaluation et une appréciation continues du contrôle de la production en usine.

PERFORMANCE MECANIQUE DES PANNEAUX SANDWICH DE BARDAGE EN POLYURETHANE:

Extraits des Recommandations Professionnelles Bardages en panneaux sandwich à deux parements en acier et à âme polyuréthane, Rage 2012

B19, B20, B23, B24

ANNEXE J - EXEMPLES DE FICHES TECHNIQUES / TABLEAUX DE CHARGES DE PANNEAUX SANDWICH DE BARDAGE

J.1. Généralités

Trois modèles de fiches techniques sont possibles en fonction de la méthode de dimensionnement choisie.

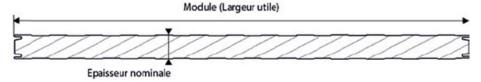
La vérification de l'ancrage et au déboutonnage des fixations doit être effectuée systématiquement en fonction des efforts du vent et éventuellement du gradient thermique, lorsque nécessaire.

Les tableaux J1 à J4 ci-après donne des exemples de fiches de valeurs caractéristiques des panneaux en pression et dépression en fonction des 3 méthodes employées.

La justification de l'emploi des panneaux en zone sismique fait l'objet d'un document officiel de validation établis à partir d'essai selon l'annexe C par un laboratoire compétent dans le domaine sismique.

Dans le cas de panneaux à fixations cachées, les performances des panneaux à la fatigue sont établis à partir d'essai selon l'annexe M.

J.2. Exemples de fiches techniques


Le contenu minimal d'une fiche technique ainsi que des exemples de tableau de charges sont donnés ci-après :

J.2.1. Données techniques garanties du panneau

Exemple de fiche technique établie conformément aux présentes Recommandations pour le dimensionnement et la mise en œuvre des bardages en panneaux sandwich à âme polyuréthane (PUR ou PIR) et à 2 parements acier.

Annal	ation	commerciale	
Appel	iauon	Commerciale	

Le nom du fabricant ou du distributeur :

▲ Figure J : Détails d'un panneau sandwich de bardage – le schéma de la section droite

Panneau sandwich à deux parements acier marqué CE selon : ...

Usine de production :......

Masse du panneau en kg/m² (présenté sous forme d'un tableau en fonction de l'épaisseur) :...

Épaisseurs des parements :......

La nuance d'acier des parements :
La classe de tolérance d'épaisseur utilisée pour les parements :
Revêtement des parements selon :
Type de mousse (PUR/PIR) avec sa référence:
Densité de la mousse :
Sollicitations résistantes (cf. Tableaux J1, J2 ou J3) :
Classement de réaction au feu :selon rapport de classement : Niveau d'EVCP(*)
Classement de résistance au feu :selon rapport de classement :
Coefficient U_c ou $U_{d,s}$ /épaisseur :pont thermique linéique ψ :

N° de certificat ACERMI (tremplin):(*)

Performance acoustique: R_w:.....selon PV:.....

Dans le cas d'un dimensionnement par calcul :

Sollicitations résistantes

pont thermique ponctuel $\chi:...$

- Rigidité de flexion par effet sandwich B_s dans le cas d'un dimensionnements selon le complément national ou annexe E.
- Rigidité de flexion du parement seul B_F dans le cas d'un dimensionnements selon l'annexe E de la NF EN 14509.
- Rigidité de cisaillement G_cA_c dans le cas d'un dimensionnements selon annexe nationale ou l'annexe E de la NF EN 14509.

N° de certification EPAQ : ...(*)

(*)Note

La référence des marques de qualités EPAQ niveau 1, ACERMI/ACERMI tremplin, ainsi que le niveau d'EVCP 1 pour la réaction au feu doit figurer sur la fiche technique, si ces marques de qualité sont revendiquées.

Exemple de tableau de charges

		anne aiss	eur n			Portées	_		eur n		appui nale (
	x y z x y z					Х	x y z x y z					
Charge de vent en pression												
Charge de vent en dépres- sion												
Charge de vent en pression												
Charge de vent en dépres- sion												

La méthode de dimensionnement utilisée :

(Annexe E de la norme NF EN 14509 + Annexe I du présent document, ou Complément national de la norme NF EN 14509 et Annexe I, ou méthode forfaitaire du Cahier 3731 du CSTB + Annexe I)

PV xxxxx des essais émis par.....le

Validé en zone de sismicité.....catégorie d'importanceclasse de sol selon rapport d'essai et document de validation (si essais réalisés)......

Performances environnementales: FDES COV.......TVOC

J.2.2. Exemple de tableaux de charges dans le cas d'utilisation du référentiel Eurocode

Exemple de Tableau – Action du vent caractéristique W_k ou $W_{ad}(^*)$ en pression en daN/ m^2 (référentiel NF EN 1991) des panneaux sandwich isolants du procédé xxx de la société yyyy

			Epais	sseur des p	anneaux ei	n mm		
Portée	4	40		0	8	0		
(m)	2 appuis	3 appuis ou plus	2 appuis	3 appuis ou plus	2 appuis	3 appuis ou plus	2 appuis	3 appuis ou plus
1,50								
2,00								

^(*) W_k : action caractéristique de vent donnée dans l'EN 1991-1-4 complétée par son annexe nationale française

Exemple de Tableau – Action du vent caractéristique W_k ou $W_{ad}(*)$ en dépression en daN/ m^2 (référentiel NF EN 1991-1-4) des panneaux sandwich isolants du procédé xxx de la société yyyy

			Epais	sseur des p	anneaux ei	n mm		
Portée	4	40		0	80			
(m)	2 appuis	3 appuis ou plus	2 appuis	3 appuis ou plus	2 appuis	3 appuis ou plus	2 appuis	3 appuis ou plus
1,50								
2,00								

^(*) W_k : action caractéristique du vent donnée dans l'EN 1991-1-4 complétée par son annexe nationale française

^(*) W_{ad} : action caractéristique accidentelle de vent donnée dans l'EN 1991-1-4 complétée par son annexe nationale française (**)

^(*) \dot{W}_{ad} : action caractéristique accidentelle du vent donnée dans l'EN 1991-1-4 complétée par son annexe nationale française (**)

^(**) Situation à considérer uniquement si demandé dans les Documents Particuliers du Marché

ENVIRONMENTELLE

Exemple de Tableau xx – Action du vent caractéristique W_k ou W_{ad} en dépression en da N/m^2 (référentiel NF EN 1991-1-4) de l'assemblage des panneaux sandwich isolant

		Largeur utile	du panneau	
Portées (m)	100	00 mm	a	utre
2 011005 (111)	Pose sur 2 appuis	Pose sur 3 appuis ou plus	Pose sur 2 appuis	Pose sur 3 appuis ou plus
1,50				
2,00				
•••				

Ce tableau est valable pour des fixations autotaraudeuse de diamètre minimal Φ xx mm en acier ou autoperceuse de diamètre minimal Φ yy mm dont la résistance caractéristique à l'arrachement P_k/γ_m est \geq xxx daN.

Pour un support présentant une caractéristique d'assemblage $\frac{P_R}{\gamma_m} < xxx$ daN, la charge maximale caractéristique peut être obtenue à partir des formules suivantes :

 $1,25 \times L \times \ell \times (1,5W_k) = n \times \frac{P_k}{\gamma_m}$ pour un appui intermédiaire (panneau sur 3 appuis).

 $1,25 \times L \times \ell \times (1,0W_{ad}) = n \times \frac{P_k}{V_m}$ pour un appui intermédiaire (panneau sur 3 appuis)(**).

 $\frac{L}{2} \times \ell \times (1.5W_k) = n \times \frac{P_k}{\gamma_m}$ pour un appui d'extrémité (hors jonction bout à bout).

 $L \times \ell \times (1.5W_k) = n \times \frac{P_k}{\gamma_m}$ pour un appui de rive en jonction bout à bout.

 $\frac{L}{2} \times \ell \times (1.0W_{ad}) = n \times \frac{P_k}{Y_m}$ pour un appui d'extrémité (hors jonction bout à bout) (**).

 $L \times \ell \times (1.0W_{ad}) = n \times \frac{P_k}{\gamma_m}$ pour un appui de rive en jonction bout à bout (**).

W_k: Dépression de vent caractéristique maximale en daN/m² calculée suivant l'EN 1991-1-4 suivant les différentes zones.

W_{ad}: Dépression de vent caractéristique accidentelle en daN/m² calculée suivant l'EN 1991-1-4 art 2 (4) et 7.2.9 (3) suivant les différentes zones (**).

ℓ : la largeur du panneau en m.

 n : Le nombre de fixations par mètre linéaire de l'appui considéré (indiqué si fixation réduite ou toutes nervures).

Pk: La résistance caractéristique à l'arrachement et au déboutonnage de l'assemblage en daN

 Υ_m : Le coefficient de sécurité matériau. Il est de 1,15 pour les supports en acier supérieur à 3 mm et 1,35 si l'épaisseur du support d'acier est comprise entre 1,5 et 3mm ou si support bois g_k : poids propre du panneau en daN/ m^2 .

Note 1

Le tableau d'assemblage précédent peut être fusionné avec celui des panneaux seul pour ne constituer qu'un seul tableau intégrant les performances du panneau et de ses assemblages.

Note 2

Exemple de tableau sans prise en compte de gradient thermique au niveau de la vérification des assemblages.

J.2.3. Exemple de tableau de charges dans le cas d'utilisation du référentiel NV65

Exemple de Tableau – Charges admissibles q sous vent normal en dépression en daN/m² (référentiel NV 65 modifiées) des panneaux sandwich isolants du procédé xxx de la société yyyy

			Epais	sseur des p	anneaux ei	n mm		
Portée	4	40		0	8	0		
(m)	2 appuis	3 appuis ou plus	2 appuis	3 appuis ou plus	2 appuis	3 appuis ou plus	2 appuis	3 appuis ou plus
1,50								
2,00								

Exemple de Tableau – Charges admissibles q sous vent normal en pression en daN/m²référentiel NV 65 modifiées) des panneaux sandwich isolants du procédé xxx de la société yyyy

		Epaisseur des panneaux en mm									
Portée	4	40		0	8	0					
(m)	2 appuis	3 appuis ou plus	2 appuis	3 appuis ou plus	2 appuis	3 appuis ou plus	2 appuis	3 appuis ou plus			
1,50											
2,00											

Exemple de Tableau - Charges admissibles q sous vent normal en dépression en daN/m² (référentiel NV 65 modifiées) de l'assemblage

Portées (m)	Largeur utile du panneau								
	100	0 mm	autre						
	Pose sur 2 appuis	Pose sur 3 appuis ou plus	Pose sur 2 appuis	Pose sur 3 appuis ou plus					
1,50									
2,00									
2,50									
3,00									
3,50									

Ce tableau est valable pour des fixations autotaraudeuse de diamètre minimal Φ xx mm en acier ou autoperceuse de diamètre minimal Φ yy mm dont la résistance caractéristique à l'arrachement P_k/γ_m est $\geq xxx$ daN.

Pour un support présentant une caractéristique d'assemblage $\frac{P_k}{\gamma_m} < xxx$ daN, la charge maximale admissible peut être obtenue à partir de la formule suivante :

 $1,25 \times L \times \ell \times (1,75q) = n \times \frac{P_k}{r_m}$ pour un appui intermédiaire (panneau sur 3 appuis)

 $\frac{L}{2} \times \ell \times (1,75q) = n \times \frac{P_k}{\gamma_m}$ pour un appui de rive d'extrémité (hors jonction bout à bout)

 $L \times \ell \times (1,75q) = n \times \frac{P_k}{\gamma_m}$ pour un appui en jonction bout à bout

q : Dépression de vent normal en daN/m²calculée à partir des NV65 modifiée 2009 en partie courante ou en rive

L: la portée en m

ℓ : la largeur du panneau en m

n : Le nombre de fixations par mètre linéaire (indiqué si fixation réduite ou toutes nervures)

Pk: La résistance caractéristique l'arrachement et au déboutonnage de l'assemblage en daN

Υm: Le coefficient de sécurité matériau. Il est de 1,15 pour les supports en acier supérieur à 3 mm et 1,35 si l'épaisseur du support d'acier est comprise entre 1,5 et 3mm ou si support bois

g: poids propre du panneau en daN/m2

J.2.4. Exemple de tableau de valeurs caractéristiques de calcul

Valeurs caractéristiques de calcul Epaisseur de parement extérieur (mm) t ₁ Epaisseur de parement intérieur (mm) t ₂								Epaisseur de pannea (mm)		
Epaisseur de pa	rement extérieu	r (mm)	aisseur de pa	rement intérieur (mm)	t ₂	e ₁	e ₂	e ₃		
Nervuration de	s parements									
Masse du pann	eau sandwich (k	g/m)								
	Rigidité de fle	xion B _s		Sur 2 appu	iis					
Rig	(daN.m²) (*)			Sur 3 appu	iis ou plus					
	Rigidité de cisaillement G _C A _C (daN) (*)			Sur 2 appu	nis					
				Sur 3 appuis ou plus						
		En travée	simple	T = 20°C						
	Moment résistant de flexion (daN.m)/m	MU2T _{Rd} et/ou ME2T _{Rd}		Sous température (****)						
		En double travée et	En	MU3A _{Rd}	T = 20°C					
Sollicitations			travée		Sous température(***	*)				
résistantes en pression (**)			Sur		T = 20°C					
		plus	appui	et/ou ME3A _{Rd}	Sous température(***	*)				
	Effort	En travée	simple		VU2T _{Rd} et/ou VE2T _{Rd}	i				
	tranchant résistant	En travée	En rive	2	VU3T _{Rd} et/ou VE3T _{Re}	d				
	daN/m	double et plus	Sur ap	pui	VU3A _{Rd} et /ou VE3A _{Rd}					
	Capacité	En travée	ée simple		RU2T _{Rd} et/ou RE2T _{Rd}	ğ				
	résistante en réaction	En travée	En rive		RU3T _{Rd} et/ou RE3T _{Rd}					
	d'appui ***) double		Sur appui		RU3A _{Rd} et /ou RE3A _{Rd}					

^(*) Pour 1 m de largeur de panneau sandwich

▲Tableau J.1 – Exemple de caractéristiques mécaniques des panneaux sandwich de bardage en pression dans le cas complément national

^(**) Déterminé selon le complément national (cf. art. 4.3) du présent document

^(***) Largeur minimum d'appui de rive conforme au paragraphe 6.5.2 du présent document

^(****) Lorsque nécessaire (cf. Annexe E et §4.2.2.2) du présent document

		Valeur c	aractéris	stique	de calcul			p	isseu annea (mm)	ıu
					eur de pareme	ent intérieur (mm)	t ₂	e ₁	e ₂	e ₃
Nervuration de	es parements		272 75							
Masse du pann	eau sandwich (k	kg/m)								
Rigidité de flexion B's					Sur 2 appuis	s				
	(daN.m²) (*) Rigidité de cisaillement G' _C A _C (daN) (*)				Sur 3 appuis	s ou plus				
					Sur 2 appuis	s				
					Sur 3 appuis ou plus					
		En travée simple			T = 20°C					
	Moment résistant de	M'U2T _{Rd} et/ou M'E2T _{Rd}			Sous température (****)					
		En double travée et plus	En travée		M'U3T _{Rd}	T = 20°C				
Sollicitations				ravée et/ou M'E3T _{Rd}	Sous température (****)				
résistantes en	(daN.m)/m		Sur appui	1535 0 1	M'U3A _{Rd}	T = 20°C				
(**)				A A	et/ou M'E3A _{Rd}	Sous température (****)			
Sollicitations résistantes en dépression (**) Effort tranch résista	Effort	En travé	e simple			V'U2T _{Rd} et/ou V'E	$2T_{Rd}$			
	tranchant résistant	En travé	e double	et	En rive	V'U3T _{Rd} et/ou V'E3T _{Rd}				
	daN/m	plus			Sur appui	V'U3A _{Rd} et /ou V'	$E3A_{Rd}$			
	Capacité	7.07 • 1.00 CO.		g	$F'U2T_{Rd} (= F_{R,td} \text{ en } 2$ appuis) et/ou $F'E2T_{Rd}$					
	résistante des assemblages	En travé	En travée double et		En rive	F'U3T _{Rd} (= F _{R,td} en 3 appuis)et/ou F'E3T _{Rd}				
	(***) plus			Sur appui		F'U3A _{Rd} (= F _{R,M} en 3 appuis)et /ou F'E3A _{Rd}				

- (*) Pour 1 m de largeur de panneau sandwich
- (**) Déterminé selon le complément national (cf. art. 4.3) du présent document (***) Nombre de fixations établis selon l'annexe I du présent document
- (****) Lorsque nécessaire (cf. Annexe E et article 4.2.2.2) du présent document

▲ Tableau J.2 – Exemple de caractéristiques mécaniques des panneaux sandwich de bardage en dépression dans le cas du complément national

Valeurs de calcul pour une épaisseur de panneau							
	2 appuis	$egin{array}{c} {\sf K}_{ m p2A} \ {\sf K}_{ m m2A} \ {\sf K}_{ m g2A} \ {\sf M}_{ m u2a} \ {\sf R}_{ m u2A} \end{array}$					
En pression	3 appuis	$egin{array}{c} K_{p3A} \\ K_{m3A} \\ K_{g3A} \\ M_{u3a} \\ R_{u3A} \\ R_{s3A} \end{array}$					

Valeurs de calcul pour une épaisseur de panneau							
	2 appuis	K′ _{p2A} K′ _{m2A} K′ _{g2A} M′ _{u2a} R′ _{u2A}					
En dépression	3 appuis	$egin{array}{c} {K'}_{p3A} \\ {K'}_{m3A} \\ {K'}_{g3A} \\ {M'}_{u3a} \\ {R'}_{u3A} \\ {R'}_{s3A} \end{array}$					

▲ Tableau J.3 – Exemple de caractéristiques mécaniques des panneaux sandwich de bardage en pression et dépression dans le cas de la méthode forfaitaire du cahier 3731 du CSTB

	8	Valeur car	actéristiq	ue de calcul			de	paisse pann (mm)	eau
Epaisseur de pa	arement extérie	eur (mm)	t ₁	Epaisseur de pa	rement intérieur (mm)	t ₂	e ₁	e_2	e ₃
Nervuration de	s parements								
Masse du pann	eau sandwich (kg/m)							
	Rigidité de f	lexion Bs	Sur 2 ap	ppuis					
	(daN.m²) (*)	(daN.m²) (*)		ppuis ou plus					
	Rigidité de c	isaillement	Sur 2 ap	ppuis					
	G _C A _C (daN) (*)		Sur 3 appuis ou plus						
	En travée s		imple T = 20°C						
	Moment résistant de flexion En (daN.m)/m double	M_u		Sous tempér	Sous température (****)				
			En	$M_u = M_{Su} +$	T = 20°C				
Sollicitations			travée	e M _{Du}	Sous température(***	**)			
résistantes en	2. 15		Sur	$M_u = M_{Su}$ + M_{Du}	T = 20°C				
pression (**)			appui		Sous température(***	**)			
	Effort	En travée s	simple	$V_u = V_{Su} + V$	$V_{F1u}+V_{F2u}$				
	tranchant résistant	En travée	En rive	$V_u = V_{Su} + V_{F1u} + V_{F2u}$					
	daN/m	double et plus	Sur appui	V _u = V _{Su} +V	$V_u = V_{Su} + V_{F1u} + V_{F2u}$				
	Capacité	En travée s	simple	imple F _{R1}					
	résistante en réaction	En travée double et plus	En rive	F _{R1}	F _{R1}				
	d'appui (***)		Sur appui	F _{R2}	F _{R2}				

^(*) Pour 1 m de largeur de panneau sandwich

▲ Tableau J.4 – Exemple de caractéristiques mécaniques des panneaux sandwich de bardage en pression dans le cas de l'annexe E de la NF EN 14509

^(**) Déterminé selon le complément national (cf. art. 4.3) du présent document

^(***) largeur minimum d'appui de rive conforme au paragraphe 6.5.2 du présent document (****) lorsque nécessaire (cf. Annexe E et article 4.2.2.2) du présent document

PERFORMANCES SISMIQUES DES PANNEAUX SANDWICH DE BARDAGE EN POLYURETHANE: Extraits des Recommandations Professionnelles Bardages en panneaux sandwich à deux parements en acier et à âme polyuréthane, Rage 2012

B19, B20, B23, B24

Les DPM doivent définir : la zone sismique, la classe de sol et la catégorie d'importance du bâtiment.

Pour les bâtiments à risque normal de catégorie d'importance IV, les critères d'intégrité doivent être précisés. A défaut de prescriptions particulières dans les DPM, seule la non chute d'éléments est considérée.

Validation sans justifications particulières

Lorsque la hauteur h de bardage est inférieure à h_{lim} et sa masse m est inférieure à m_{lim} conformément aux dispositions du tableau 1.3 du guide ENS (Tableau ci-après), ce bardage peut ne pas faire l'objet d'une analyse parasismique au sens de la NF EN 1998-1. Le critère de non chute est alors satisfait d'office si les dispositions technologiques des présentes recommandations sont satisfaites.

Familles d'éléments non structuraux du cadre bâti	Domaine d'application par famille notamment : — hauteur de référence (h _{im}) — masse de référence (m _{lim})
Éléments de façade	Fixation à la structure par liaison mécanique seule : $-h_{\rm lim}=3.5~{\rm m}$ $-m_{\rm lim}=25~{\rm kg/m^2}$

Autre cas

Dans le cas où l'analyse parasismique au sens de la NF EN 1998-1 est à mener, les démarches de justifications sont données en annexes 1 et 2 du guide ENS.

L'[Annexe C] du présent document définit les essais pouvant être utilisés pour justifier les bardages vis-à-vis de l'action sismique.

Lorsque des essais sont effectués pour satisfaire l'exigence sismique, ces essais et le rapport doivent être supervisés par une tierce partie compétente et indépendante.

Le domaine d'emploi des panneaux et de leur assemblage en zone sismigue est établi selon le Tableau 2 du présent document.

Zones de	Catégories d'importance								
sismicité	1	H II	III	IV					
1	(*)	(*)	(*)	(*)					
2	(*)	(*)	(**)	(**) (***)					
3	(*)	(**)	(**)	(**) (***)					
4	(*)	(**)	(**)	(**) (***)					

- (*) Selon l'arrêté du 22 octobre 2010. Aucune justification particulière à fournir.
- (**) Sur la base des résultats d'essais réalisés selon l'Annexe C (justification des panneaux sandwiches en zone sismique), le laboratoire précisera le domaine d'emploi et les dispositions constructives à respecter via un rapport d'étude. Le document (domaine de validation par un laboratoire agréé) sera présenté sur demande.
- (***) à défaut n'est visé que le critère de non chute.

▲ Tableau 2 : Domaine d'emploi des panneaux sandwich de bardage en zone sismique

Note: des modificatifs sismiques (CSTB) couvrent actuellement les utilisations en zone sismique (basés sur des essais SNPPA effectués au CSTB et à Polytech Clermont Ferrand).

PERFORMANCE FEU DES PANNEAUX SANDWICH DE BARDAGE EN POLYURETHANE

B19, B20, B23, B24

Rappel sur le classement des Euroclasses (selon arrêté du 20/12/2002)

Réaction au feu (Extrait)

Arrêté dit de transpostion Du 20/12/2002 paru au JO le 31/12/2002

Clas	sses selon NF EN 135	01-1	Exigences
A1			Incombustible
A2	s1	d0	MO
A2	s1 s2 s3	d1 d0 d1	
В	s1 s2 s3	d0 d1	M1
С	s1 s2 s3	d0 d1	M2
D	s1 s2 s3	d0 d1	M3 M4 (non gouttant)
Toutes	M4		

Résistance au feu (Extrait)

Arrêté du 22 mars 2004 paru le 1^{er} avril 2004 au JO

Catégories de pe	erformance a	u feu (en degré mn)	Exigences
		EN 13501-2	
Stabilité au feu	SF +mn	R+mn	Résistance mécanique
Pare-flamme	PF+mn	E+mn RE+mn	Etanchéité aux flammes et aux gaz chauds idem + résistance mécanique
Coupe-feu	CF+mn	El+mn REl+mn	Etanchéité aux flammes et aux gaz chauds, isolation thermique idem + résistance mécanique

Performance feu

Ouvrages	Article	Code du travail			P	Article	ERP				
		·			u plancher ernier niveau			Hauteur du plar dernier niveau		Hauteur du bas du derr > 8m	•
		Simple RDC	R +x	Simple RDC	R +x			Simple RDC	R +x	Simple RDC	R +x
Façade/ Bardage	Art. R. 235-4-13	Aucune exigence	Aucune exigence	Sans objet	Sans objet	C019		Revêtement extérieurM3	Revêtement extérieurM3	Revêtement extérieurM3	Revêtement extérieurM3
baiuage	Art. R. 235-4-14	Sans objet	Sans Sans Bâtiment objet objet dominant	dominant	CO20		Ds3d0	Ds3d0	Ds3d0	Ds3d0	
	Art. R. 235-4-15 + R121-1 et R121-5 + art 4 arrêté 5 aout 1992	t. R. 235-4-15 Sans Sans objet sart 4 arrêté 5 aout 192 Sans objet sart 5 aout 192 Sans objet sart 6 aout 192 S	une couverture : Mur coupe feu 1h sur 8m de hauteur	CO21		Sans objet Règle C+D		Sans objet	Règle C+D		
						CO2 2	Sans baie	Sans objet	EI 30	Sans objet	EI 60
						AM8 + guide des	Sans dérogation	A2s2d0 Ou écran thermique 1/4h	A2s2d0 Ou écran thermique 1/4h	A2s2d0 Ou écran thermique 1/4h	A2s2d0 Ou écran thermique 1/4h
						isolan ts	Dérogatio n CECMI panneau PU/PIR Locaux non a sommeil Simple RDC CR CCS 5 janvier 2006	Cf. fiche de domaine d'emploi ou appréciation de laboratoire	Non admis	Cf. fiche de domaine d'emploi ou appréciation de laboratoire	Non admis

Article CO 19 En savoir plus sur cet article...

Modifié par Arrêté du 22 décembre 1981, v. init.

Généralités

§ 1. Objet:

Les dispositions de la présente section ont pour but d'empêcher la propagation du feu par les façades.

- § 2. Les dispositions de la présente section sont également applicables aux couvertures qui font avec la verticale un angle inférieur à 30° et qui forment façade sur plusieurs niveaux accessibles au public.
- § 3. L'instruction technique relative aux façades précise les conditions d'application et définit des solutions ne nécessitant pas de vérifications expérimentales ou par analogie.

Article CO 20

• Modifié par Arrêté du 24 mai 2010 - art. 1

Réaction au feu des composants et équipements de façades

- § 1. Les revêtements extérieurs de façades, les tableaux de baie situés à l'extérieur des vitrages, les cadres de menuiserie et leurs remplissages, les fermetures et éléments d'occultation des baies, les stores, les garde-corps et leurs retours ainsi que les grilles d'aération doivent être en matériau de catégorie M 3 ou D-s3, d0.
- § 2. Toutefois, lorsque la règle de l'article CO 21, § 3 (règle C + D), n'est pas appliquée à l'ensemble d'une façade, les revêtements extérieurs de façade, les fermetures et éléments d'occultation des baies doivent être de catégorie M 2 ou C-s3, d0.
- § 3. Les coffres de branchement, les joints et garnitures de joint ne sont pas soumis aux exigences de réaction au feu des paragraphes 1 et 2 ci-dessus

Article CO 21

Résistance à la propagation verticale du feu par les façades comportant des baies

§ 1. Règles concernant l'accrochage des panneaux de façade

Toutes dispositions doivent être prises pour éviter le passage rapide des flammes ou des gaz chauds d'un étage à l'autre par la jonction façade-plancher.

Cette condition est réputée satisfaite lorsque cette jonction est réalisée conformément aux solutions techniques décrites dans l'instruction technique relative aux façades. Sinon l'efficacité de ces dispositions doit être démontrée par un essai.

Lorsque la règle du C + D n'est pas applicable, les dispositions du premier alinéa ci-dessus ne sont imposées qu'aux façades légères qui s'échauffent rapidement, à l'exclusion des façades en maçonnerie pour lesquelles aucune disposition particulière n'est à prévoir.

§ 2. Règle concernant le recoupement des vides

Dans les deux premiers cas visés au paragraphe 3 a ci-après, si les éléments constitutifs de la façade comportent des vides susceptibles de créer un effet de cheminée, ces vides doivent être recoupés tous les deux niveaux par des matériaux de catégorie M 0.

- § 3. Règle "C + D" concernant la création d'un obstacle au passage du feu d'un étage à l'autre
- a) La règle définie ci-dessous est applicable :
- aux façades des bâtiments comportant des locaux réservés au sommeil par destination, audessus du 1er étage ;
- aux façades des bâtiments dont le plancher bas du dernier niveau est à plus de 8 mètres du sol et qui répondent, en outre, à une des conditions suivantes :
- le bâtiment est divisé en secteurs suivant les dispositions de l'article CO 24 (§ 2);
- le bâtiment est divisé en compartiments suivant les dispositions de l'article CO 25;
- aux parties de façades situées au droit des planchers hauts des locaux à risques importants ;
- aux parties de façades situées au droit des planchers d'isolement avec un tiers.

Toutefois, cette règle n'est pas exigée si l'établissement recevant du public occupe la totalité du bâtiment et s'il est entièrement équipé d'un système d'extinction automatique du type sprinkleur ou d'un système de sécurité incendie de catégorie A.

b) Les valeurs C et D doivent être liées par une des relations ci-dessous en fonction de la masse combustible mobilisable :

 $C + D \ge 1,00$ mètre si $M \le 80$ MJ/m²

 $C + D \ge 1.30$ mètre si M > 80 MJ/m²

C exprimé en mètres étant la distance verticale entre le haut d'une baie et le bas de la baie qui lui est superposée lorsque la façade est en maçonnerie traditionnelle, ou la valeur de l'indice caractéristique des panneaux de façade vitrés déterminée par l'essai cité au paragraphe 1;

D exprimé en mètres étant la distance horizontale entre le plan des vitres et le nu de la plus grande saillie de l'obstacle résistant au feu qui sépare les murs ou les panneaux situés de part et d'autre du plancher ;

M exprimé en MJ/m² étant la masse combustible mobilisable de la façade à l'exclusion des menuiseries, fermetures et garde-corps, rapportée au mètre carré de façade, baies comprises. Dans le cas de maçonnerie traditionnelle, cette masse est nulle. Elle peut dans certains cas être déterminée conformément aux règles de l'instruction technique relative aux façades.

c) Pour l'application de cette règle, il n'est pas tenu compte des orifices d'entrée d'air de ventilation dont la section ne dépasse pas 200 centimètres carrés.

Article CO 22

Résistance à la propagation verticale du feu par les façades ne comportant pas de baie

§ 1. Pour les façades ne comportant pas de baie, la somme des durées coupe-feu réelles déterminées pour le panneau de façade exposé de l'intérieur et de l'extérieur lors des essais de classement de résistance au feu doit être au moins égale à :

Trente minutes pour les établissements installés dans les bâtiments dont le plancher bas du dernier niveau est à moins de 8 mètres du sol ;

Soixante minutes lorsque le plancher bas du dernier niveau est à plus de 8 mètres du sol.

Toutefois les orifices d'entrée d'air de ventilation sont tolérés sur ces façades.

- § 2. Les murs en maçonnerie traditionnelle ne sont pas soumis aux dispositions du paragraphe 1 ci-dessus.
- § 3. De plus, les façades composées de panneaux montés en avant des planchers doivent respecter les dispositions du paragraphe 1 de l'article CO 21.
- § 4. Les dispositions des paragraphes 1 et 3 ci-dessus ne s'appliquent pas aux bâtiments à simple rez-de-chaussée.

Article AM 8

• Modifié par Arrêté du 26 juin 2008 - art. 9, v. init.

Produits d'isolation

- § 1. Les produits d'isolation acoustique, thermique ou autre, simples ou composites, dont l'épaisseur d'isolant est supérieure à 5 mm (10 mm en sol), doivent respecter l'une des dispositions suivantes :
- a) Etre classés au moins :
- A2 s2, d0 en paroi verticale, en plafond ou en toiture ;
- A2 fl s1 en plancher, au sol.

Les revêtements absorbants acoustiques dont la résistance thermique est inférieure à 0,5 m².K/W ou dont la conductivité thermique est supérieure à 0,065 W/m.K ne sont pas assujettis aux dispositions du présent article.

b) Etre protégés par un écran thermique disposé sur la ou les faces susceptibles d'être exposées à un feu intérieur au bâtiment. Cet écran doit jouer son rôle protecteur, vis-à-vis de l'action du programme thermique normalisé, durant au moins :

1/4 heure pour les parois verticales et les sols ;

1/2 heure pour les autres parois.

Le "guide d'emploi des isolants combustibles dans les établissements recevant du public" (1) précise les conditions de mise en œuvre de tels écrans.

Lorsque des produits combustibles, connexes aux isolants incorporés aux parois, sont associés en usine ou sur chantier aux isolants précités, l'ensemble composite obtenu est réputé répondre aux objectifs de sécurité du présent article et du guide d'emploi des isolants combustibles dans les établissements recevant du public à condition que les produits combustibles rapportés ne soient pas en contact avec l'air ambiant.

§ 2. Les produits d'isolation ne répondant pas aux dispositions du paragraphe 1 ci-dessus ne peuvent être mis en œuvre qu'après avis favorable de la Commission centrale de sécurité. Les modalités d'application de la présente disposition sont fixées dans la troisième partie du guide précité.

NOTA:

Arrêté du 4 juillet 2007 annexe : L'application de l'article AM 8 aux revêtements d'isolation acoustique est suspendue pour une durée d'un an.

(1) Le "guide d'emploi des isolants combustibles dans les établissements recevant du public" est annexé à l'arrêté du 6 octobre 2004 portant approbation de dispositions complétant et modifiant le règlement de sécurité contre les risques d'incendie et de panique dans les établissements recevant du public.

DIRECTION DE LA DEFENSE ET DE LA SECURITE CIVILES

SOUS DIRECTION DE LA GESTION DES RISQUES Bureau de la Réglementation incendie Et des Risques de la Vie courante Paris le

DDSC/SDGR/DDSC6/BN/N° Affaire suivie par : M; Nouvier Tel : 01 56 04 75 84 Fax : 01 56 04 76 00

Courriel: bernard.nouvier@interieur.gouv.fr

RELEVE DES AVIS

rendus lors de la réunion du 5 janvier 2006 de la sous-commission permanente de la Commission centrale de sécurité et de la Commission technique interministérielle des immeubles de grande hauteur

3-3 : domaine d'emploi, dans les ERP, des panneaux sandwiches de bardage à deux parements acier et âme en polyuréthane ignifugée.

En application de l'article AM 8 § 2 et de la troisième partie du guide des isolants, le syndicat national du profilage des produits plats en acier (S.N.P.PA) a souhaité que la Commission centrale soit invitée à donner un avis sur le domaine d'emploi en ERP des panneaux sandwiches de bardage à deux parements acier et à âme en polyuréthane ignifugée fabriqués par ses membres.

Le comité d'étude et de classification des matériaux et éléments de construction par rapport au danger d'incendie (C.E.C.M.I) a examiné cette demande les 18 octobre et 22 novembre 2005.

Bien que non conformes aux dispositions de l'ancien article AM 8 (la tôle n'est pas un écran thermique), les panneaux sandwich peuvent être employés dans certains ERP. Ceci résulte de positions de la fin des années 80, reprises dans les "cahiers de la prévention". Leur emploi est admis

- en parois périphériques (bardage) des bâtiments à simple rez-de-chaussée et ne comportant pas de locaux à sommeil :
- en couverture (respect des dispositions des articles CO 16 à CO 18).

Le SNPPA a introduit sa demande, restreinte par rapport au champ précédent aux seules applications en bardage, pour des locaux à simple RdC, non destinés à l'hébergement, des 3^{ème}, 4^{ème} et 5^{ème} catégories. De plus cette demande ne vaut que pour les panneaux à âme en polyuréthane ignifugée fabriqués par les adhérents du SNPPA et faisant l'objet d'un avis technique.

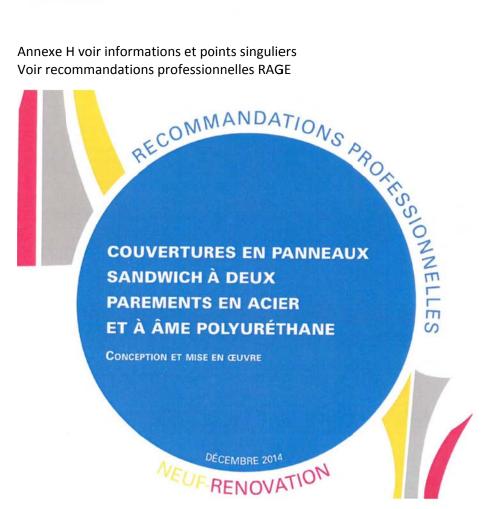
Après présentation synthétique de la démarche suivie dans l'étude et débats, la Commission a donné un avis favorable à l'emploi en ERP des panneaux faisant l'objet des fiches présentées par le SNPPA, selon les limitations indiquées dans ces documents.

Les corrections et compléments suivants devront être apportés:

- 1) Dans les fiches, il conviendra de supprimer la référence à l'avis technique existant (avis dont la validité est de surcroît périmée pour Panelco et P2F). La ligne correspondante devra être remplacée par deux nouvelles lignes mentionnant l'une le code de formulation de la mousse, l'autre l'épaisseur de la tôle du parement intérieur. De même, les 4 dernières lignes du 1^{er} tableau seront à supprimées.
- 2) Afin d'assurer la traçabilité des panneaux et indépendamment de la certification par tierce partie qui résultera du marquage CE des produits, le numéro de l'avis technique devra figurer sur le panneau lui-même.
- 3) Les hauteurs sont les hauteurs moyennes au sens de l'IT 246.
- 4) En présence de mezzanines, les hauteurs seront comptées à partir de celles-ci.

ETANCHEITE A L'EAU DES PANNEAUX SANDWICH EN PLOYURETHANE : Extrait des Recommandations Professionnelles Bardages en panneaux sandwich à deux parements en acier et à âme polyuréthane, Rage 2012

B19, B20, B23, B24


4.13. • Étanchéité à l'eau

Les performances d'étanchéité à l'eau sont réputées satisfaites si les dispositions technologiques figurant dans le présent document sont respectées.

Dans le cas de présence de baies en façade, telles que traitées à l'[Annexe H], la hauteur de bâtiment ne doit pas excéder 20 m.

Les baies ne sont envisagées que pour des façades verticales (non inclinées vers l'intérieur).

Annexe H voir informations et points singuliers Voir recommandations professionnelles RAGE

PERFORMANCE THERMIQUE ET PONTS THERMIQUES DES BARDAGES EN PANNEAUX SANDWICH

POLYURETHANE : Extraits des Recommandations Professionnelles Bardages en panneaux sandwich à deux parements en acier et à âme polyuréthane, Rage 2012

B19 et B23

ANNEXE F - RÉGLEMENTATION THERMIQUE - PERFORMANCES THERMIQUES DE SOLUTIONS TECHNIQUES TRADITIONNELLES

F.1. Méthodes de calcul

Dans le présent document, le coefficient U_p d'un bardage en panneaux sandwich peut se calculer selon l'une des trois méthodes suivantes :

- selon les RèglesTh-bât (version de 2012);
- selon la norme NF EN 14509;
- selon la norme NF EN ISO 10211.

a) Calcul selon les Règles Th-bât (version de 2012)

Le coefficient U_p se calcule en fonction du coefficient surfacique en partie courante U_c (hors ponts thermiques intégrés) et des coefficients linéiques et ponctuels des ponts thermiques intégrés à la paroi, selon la formule suivante :

$$U_{p} = U_{c} + \frac{\Psi \times L_{p} + n \times \chi}{A} \qquad (W/m^{2}.K)$$

avec:

• U_c: coefficient de transmission surfacique en partie courante du panneau sandwich (sans ponts thermiques intégrés):

$$U_{c} = \frac{1}{(R_{se} + R_{si}) + \left(\frac{e}{\lambda}\right)} \qquad (W/m^{2}.K)$$

- R_{si} :résistance superficielle côté intérieur de la paroi $((m^2.K)/W)$,
- R_{se} : résistance superficielle côté extérieur de la paroi ((m^2 .K)/W),
- e: épaisseur nominale de l'âme du panneau (m),
- λ: conductivité thermique de l'isolant (W/m.K),
- ψ: coefficient linéique du pont thermique au niveau de l'emboîtement entre panneaux (W/m.K),
- L_p: longueur d'emboîtement entre panneaux (m),
- n: nombre de fixations des panneaux,
- χ : coefficient ponctuel du pont thermique dû à une fixation (W/K),
- A: surface totale de la paroi (m²).

Le suivi de la valeur de la conductivité thermique λ est assuré :

- soit via une marque de qualité type ACERMI ou ACERMI Tremplin (contrôle ITT et FPC par laboratoire notifié);
- soit c'est la valeur forfaitaire des règles Th-bât de la réglementation thermique en vigueur (0.032 W/m K).

En l'absence de calcul détaillé selon la NF EN ISO 10211 ou de valeurs tabulées dans les règles Th-bât de la réglementation thermique, il convient de prendre :

Fixations apparentes

Épaisseur nominale de l'âme du pan- neau (mm)	Ψ (W/m.K)	χ (W/K)
≤ 40	0.120	
60	0.040	0.01
80	0.020	0,01
≥ 100	0.010	

Fixations cachées

Épaisseur nominale de l'âme du pan- neau (mm)	Ψ (W /m. K)	χ (W/K)
≤ 40	0.350	
60	0.120	0.01
80	0.040	0,01
≥ 100	0.020	

b) Calcul selon la norme NF EN 14509

Dans la norme NF EN 14509, le coefficient $U_{d,s}$ tient compte uniquement de la géométrie du panneau et du pont thermique au niveau de l'assemblage longitudinal de panneaux (Ψ). Dans ce cas, le coefficient U_p se calcule selon la formule suivante :

$$U_p = U_{d,s} + \frac{n \times \chi}{A}$$
 (W/m².K)

avec:

- χ: coefficient ponctuel du pont thermique dû à une fixation (W/K),
- A: surface totale de la paroi (m²).
- U_{d,s}: coefficient de transmission thermique du panneau. Selon la NF EN 14509 (méthode A. 10.3), on a :

$$U_{d,s} = U_{n,s} + \Delta U_{j}$$
 (W/m².K)

avec:

 $\mathbf{U}_{\mathrm{n,s}}$: coefficient de transmission thermique du panneau, incluant la géométrie du profil du panneau.

$$U_{n,s} = \frac{1}{\left(R_{se} + R_{si}\right) + \left(\frac{d_c + \Delta e}{\lambda_c}\right) + \frac{t_{ni}}{\lambda_f} + \frac{t_{ne}}{\lambda_{fe}}} \quad \left(W/m^2.K\right)$$

- R_{si} :résistance superficielle côté intérieur de la paroi $((m^2.K)/W)$,
- R_{se} :résistance superficielle côté extérieur de la paroi ((m².K)/W),

- d_c: épaisseur nominale de l'âme du panneau (m),
- Δe :épaisseur supplémentaire due aux profils des deux parements (m),
- t_{ni}: épaisseur nominale du parement intérieur (m),
- t_{ne} : épaisseur nominale du parement extérieur (m),
- λ_f : conductivité thermique de calcul du parement intérieur (W/m.K),
- λ_{f_e} : conductivité thermique de calcul du parement extérieur (W/m.K),

ΔU;: influence thermique de l'assemblage longitudinal,

$$\Delta U_j = \frac{\Psi_j}{B} (W/m^2.K)$$

- coefficient linéique du pont thermique des assemblages (W/m.K),
- B: largeur hors tout du panneau (m).

En l'absence de calcul détaillé selon la NF EN ISO 10211 ou de valeurs tabulées dans les règles Th-bât de la réglementation thermique, il convient de prendre:

Fixations apparentes

Épaisseur nominale de l'âme du panneau (mm)	Ψ (W/m.K)	χ (W/K)
≤ 40	0.120	
60	0.040	0.01
80	0.020	0,01
≥ 100	0.010	

Fixations cachées

Épaisseur nominale de l'âme du panneau (mm)	Ψ (W/m.K)	χ (W/K)
≤ 40	0.350	
60	0.120	0.01
80	0.040	0,01
≥ 100	0.020	

c) Calcul selon la norme NF EN ISO 10211

Le coefficient U_D se calcule par une méthode numérique (Eléments Finis) conformément à la norme NF EN ISO 10211.

F.2. Coefficient $U_c/U_{n,s}$ pour différentes configurations

a) Calcul selon les Règles Th-bât

Le tableau F.1 donne le coefficient U_c pour différentes configurations de panneaux sandwich à parements en acier avec isolation à base de mousse de polyuréthane (PUR) ou de polyisocyanurate (PIR). Le coefficient U_c ne prend pas en compte la géométrie du panneau (nervuration).

Conductivité thermique de l'isolant (W/m.K)	Épaisseur nominale de l'âme du panneau (mm)	U (W/m².K)
0,023	80	0,274
0,023	100	0,221
0,023	120	0,186
0,023	150	0,149
0,025	80	0,297
0,025	100	0,24
0,025	120	0,201
0,025	150	0,162
0,028	80	0,330
0,028	100	0,267
0,028	120	0,224
0,028	150	0,181
0,032	80	0,375
0,032	100	0,303
0,032	120	0,255
0,032	150	0,206
- R _{si} = 0.13 (m ² .K)/W - R _{se} = 0.04 (m ² .K)/W		

ightharpoonup Tableau F.1 : Coefficient U_c pour différentes configurations de panneaux sandwich

Note

Pour des configurations intermédiaires, le coefficient $\mathbf{U}_{\rm c}$ peut être obtenu par interpolation linéaire.

b) Calcul selon la norme NF EN 14509

Le tableau F.2 donne le coefficient $U_{n,s}$ pour différentes configurations de panneaux sandwich à parements en acier avec isolation à base de mousse de polyuréthane (PUR) ou de polyisocyanurate (PIR). $U_{n,s}$ prend en compte la forme du panneau (nervuration).

Conductivité thermique de l'isolant (W/m.K)	Épaisseur du Panneau ($\mathbf{d_c} + \Delta \mathbf{e}$) (mm)	U (W/m².K)
0,023	82	0,268
0,023	102	0,217
0,023	122	0,183
0,023	152	0,148
0,025	82	0,290
0,025	102	0,235
0,025	122	0,198
0,025	152	0,160
0,028	82	0,323
0,028	102	0,262
0,028	122	0,221
0,028	152	0,179
0,032	82	0,366
0,032	102	0,298
0,032	122	0,251
0,032	152	0,203

 $-\Delta e=2~mm~(pour~une~g\'{e}om\'{e}trie~courante,~trap\'{e}zo\"{i}dale)\\ -\lambda_{fi}=\lambda_{fe}=50~W/m.K\\ -t_{ni}\leq0,5~mm\\ -t_{ne}\leq0,5~mm\\ -R_{si}=0.13~(m^2.K)/W\\ -R_{se}=0.04~(m^2.K)/W$

lacktriangle Tableau F.2 : Coefficient $U_{n,s}$ pour différentes configurations de panneaux sandwich

Note

Pour des configurations intermédiaires, le coefficient $\mathbf{U}_{\mathrm{n,s}}$ peut être obtenu par interpolation linéaire.

ENTRONS D'APRES

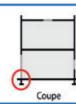
ANNEXE G -TRAITEMENT DES POINTS SINGULIERS - PONTS THERMIQUES DE LIAISON ET ÉTANCHÉITÉ À L'AIR

Cette annexe donne des exemples de solutions d'amélioration de l'étanchéité à l'air et de correction de ponts thermiques aux niveaux des liaisons :

- Bardage / plancher bas
- Bardage / façade
- Bardage / menuiserie
- Bardage / toiture (Acrotère)
- Bardage / couverture
- Autres points singuliers

Les fiches qui suivent illustrent des dispositions de correction des ponts thermiques et d'amélioration de l'étanchéité à l'air. Elles ne sont pas des détails de mise en œuvre notamment pour ce qui concerne la mécanique et l'étanchéité à l'eau.

Pour réduire la perméabilité à l'air de l'enveloppe, il est impératif de la prendre en compte dès la phase conception d'un projet neuf avec une vision globale jusqu'à la réception.


▲ Figure G.1. Principes d'une démarche pour améliorer l'étanchéité à l'air

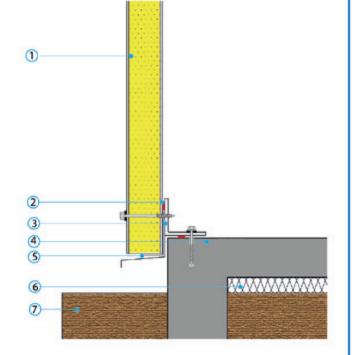
Note

Cette annexe n'est pas exhaustive.

Les solutions d'amélioration de l'étanchéité à l'air et de correction des ponts thermiques sont valables pour les locaux à faible ou moyenne hygrométrie.

Liaison bardage / plancher bas: Cas 1

Désignation


- 1. Panneau sandwich de bardage
- 2. Joint d'étanchéité
- 3. Appui
- Dallage
- 5. Pièce support
- 6. Isolation horizontale
- 7. Sol

Mise en œuvre de joints d'étanchéité (2).

Travaux de correction du pont thermique

Pas de travaux.

Caractéristiques thermiques

 $\Psi(W/(m.K))$

0.50

Valable pour :

- panneaux de bardage ≥ 8 cm.
- panneaux recouvrant au moins 5 cm le nez de la dalle.
- conductivité thermique de l'isolant des

panneaux: 0.023 à 0.031 W/(m.K).

- isolation horizontale de 6 cm.

Ces préconisations sont valables pour des locaux à faible ou moyenne hygrométrie

Désignation

- Panneau sandwich de bardage
- Joint d'étanchéité 2.
- 3. Appui
- Dallage 4.
- 5. Pièce support
- Isolant rigide
- Isolation verticale avec 7.
- protection mécanique

Travaux d'étanchéité à l'air

Mise en œuvre de joints d'étanchéité (2).

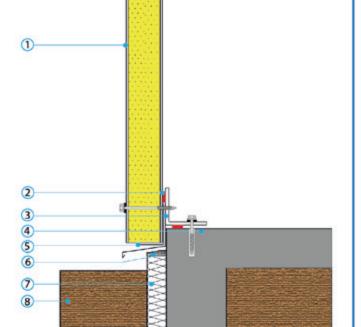
Travaux de correction du pont thermique

Mise en œuvre d'une isolation périphérique verticale extérieure devant la longrine et le soubassement (7):

- Epaisseur ≥ 6 cm.
- Profondeur au-dessous du niveau du dallage (face inférieure) ≥ 50 cm.
- Espace entre le bas des panneaux et l'isolation périphérique ≤ 5 cm.

Caractéristiques thermiques

 $\Psi(W/(m.K))$


0.40

Valable pour:

- panneaux de bardage ≥ 8 cm.
- conductivité thermique de l'isolant des panneaux : 0.023 à 0.031 W/(m.K).

Ces préconisations sont valables pour des locaux à faible ou moyenne hygrométrie

Liaison bardage / bardage - angle sortant: cas 1

1

2 (3)

4

(5)

6

7

Désignation

- Façonné d'angle
- 2. Complément d'isolation
- 3. Panneau sandwich de bardage
- 4. Joint d'étanchéité
- 5. Cornière d'angle interne
- Poteau 6.
- Panneau sandwich de bardage

Mise en œuvre de joints d'étanchéité (4).

Travaux de correction du pont thermique

Mise en œuvre d'un complément d'isolation (en Laine Minérale ; \(\lambda \leq 0.042 \) W/m.K) au niveau de l'angle (2).

Caractéristiques thermiques

Ψ (W/(m.K))

0.02

Valable pour:

- panneaux de bardage ≥ 8 cm.
- conductivité thermique de l'isolant des panneaux: 0.023 à 0.031 W/(m.K).

Ces préconisations sont valables pour des locaux à faible ou moyenne hygrométrie

Liaison bardage / bardage - angle sortant: cas 2

(1)

(2)

(3)

(4)

Désignation

- Façonné d'angle
- 2. Panneau sandwich de bardage
- 3. Trait de scie
- Complément d'isolation
- Joint d'étanchéité
- 6. Cornière d'angle interne
- 7. Panneau sandwich de bardage

Travaux d'étanchéité à l'air

Mise en œuvre de joints d'étanchéité (5).

Travaux de correction du pont thermique

Mise en œuvre d'un complément d'isolation (en Laine Minérale ; $\lambda \le 0.042$ W/m.K) à la jonction de panneaux (4) + éventuellement un trait de scie (3).

Caractéristiques thermiques

Ψ (W/(m.K))

0.10 (avec trait de scie)

0.25 (sans trait de scie)

Valable pour :

- panneaux de bardage ≥ 8 cm.
- conductivité thermique de l'isolant des panneaux : 0.023 à 0.031 W/(m.K).

Ces préconisations sont valables pour des locaux à faible ou moyenne hygrométrie

Liaison bardage / bardage - angle rentrant

Plan

Désignation

- Poteau
- 2. Façonné d'angle
- 3. Complément d'isolation
- 4. Panneau sandwich de bardage
- 5. Joint d'étanchéité
- 6. Façonné d'angle
- Panneau sandwich de bardage 7.

Travaux d'étanchéité à l'air

Mise en œuvre de joints d'étanchéité (5).

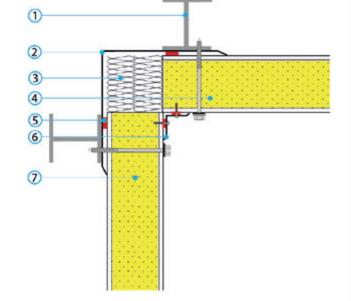
Travaux de correction du pont thermique

Mise en œuvre d'un complément d'isolation (en Laine Minérale ; \(\lambda \leq 0.042\) W/m.K) \(\delta\) la jonction de panneaux sandwich (3).

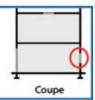
Caractéristiques thermiques

$\Psi (W/(m.K))$

0


Valable pour :

- panneaux de bardage ≥ 8 cm.
- conductivité thermique de l'isolant des


panneaux: 0.023 à 0.031 W/(m.K).

Ces préconisations sont valables pour des locaux à faible ou moyenne hygrométrie

Liaison bardage / fenêtre – appui

Désignation

- 1. Vitrage
- 2 Bavette fixé sur le jambage
- 3. Complément d'isolation
- 4. Joint d'étanchéité
- 5. Chevêtre
- Panneau sandwich de bardage

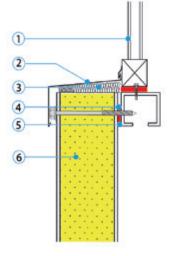
Mise en œuvre de joints d'étanchéité (3).

Travaux de correction du pont thermique

Mise en œuvre d'un complément d'isolation (en Laine Minérale ; $\lambda \le 0.042 \text{ W/m.K}$) (2).

Ψ (W/(m.K))

0.10


Valable pour :

- panneaux de bardage ≥ 8 cm.
- conductivité thermique de l'isolant des

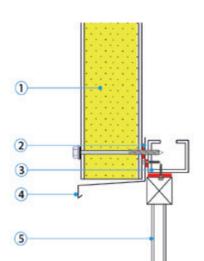
panneaux: 0.023 à 0.031 W/(m.K).

Ces préconisations sont valables pour des locaux à faible ou moyenne hygrométrie

Liaison bardage / fenêtre - linteau

<u>Désignation</u> Panneau

- Panneau sandwich de
- 1. bardage
- 2. Joint d'étanchéité
- Chevêtre
- 4. Bavette de rejet d'eau
- 5. Vitrage



Mise en œuvre de joints d'étanchéité (2).

Travaux de correction du pont thermique

Sans correction.

Caractéristiques thermiques

Ψ (W/(m.K))

0.45

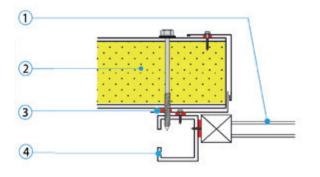
Valable pour :

- panneaux de bardage ≥ 8 cm.
- conductivité thermique de l'isolant des

panneaux: 0.023 à 0.031 W/(m.K).

Ces préconisations sont valables pour des locaux à faible ou moyenne hygrométrie

ABL


Coupe

Liaison bardage / fenêtre - tableau

Désignation

- 1. Vitrage
- Panneau sandwich de bardage
- 3. Joint d'étanchéité
- Chevêtre

Travaux d'étanchéité à l'air

Mise en œuvre de joints d'étanchéité (3).

Travaux de correction du pont thermique

Sans correction.

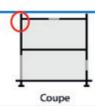
Caractéristiques thermiques

 $\Psi(W/(m.K))$

0.35

Valable pour :

- panneaux de bardage ≥ 8 cm.
- conductivité thermique de l'isolant des


panneaux: 0.023 à 0.031 W/(m.K).

Ces préconisations sont valables pour des locaux à faible ou moyenne hygrométrie

D'APRES

Liaison bardage / toiture (Acrotère):

Désignation

- 1. Couvertine
- 2. Panneau sandwich de bardage
- 3. Complément d'isolation
- Pare-vapeur au lot étanchéité et assemblé aux panneaux
- Isolant toiture
- 6. Closoir

Travaux d'étanchéité à l'air

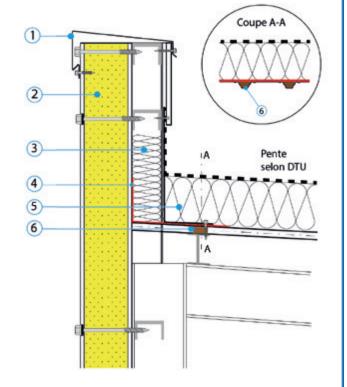
Mise en œuvre de pare-vapeur + closoirs (4 et 6).

Travaux de correction du pont thermique

Mise en œuvre d'un complément d'isolation (en Laine Minérale ; $\lambda \le 0.042$ W/m.K) le long de l'acrotère (3).

Caractéristiques thermiques

 $\Psi (W/(m.K))$


0.45

Valable pour :

- panneaux de bardage ≥ 8 cm.
- conductivité thermique de l'isolant des

panneaux: 0.023 à 0.031 W/(m.K).

isolation toiture : ≥ 13 cm.

Ces préconisations sont valables pour des locaux à faible ou moyenne hygrométrie

(1)

(2)

3

Coupe

Liaison bardage / couverture (Acrotère) : Cas 1

Désignation

- 1. Couvertine
- Panneau sandwich de bardage 2.
- Complément d'isolation 3.
- Panneau sandwich de couverture 4.
- 5. Joint d'étanchéité

Travaux d'étanchéité à l'air

Mise en œuvre de joints d'étanchéité (5).

Travaux de correction du pont thermique

Mise en œuvre d'un complément d'isolation (en Laine Minérale ; $\lambda \le 0.042 \text{ W/m.K}$) (3).

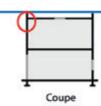
Caractéristiques thermiques

Ψ (W/(m.K))

0.20

Valable pour :

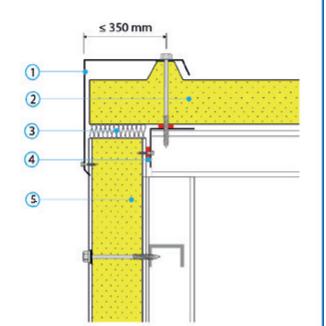
- panneaux de bardage ≥ 80 mm.
- panneaux de couverture ≥ 80 mm.
- conductivité thermique de l'isolant des


panneaux : 0.023 à 0.031 W/(m.K)

Ces préconisations sont valables pour des locaux à faible ou moyenne hygrométrie

Liaison bardage / couverture: Cas 2

Désignation


- Bande de rive en saillie
- 2. Panneau sandwich de couverture
- 3. Complément d'isolation
- Joint d'étanchéité 4.
- 5. Panneau sandwich de bardage

Travaux d'étanchéité à l'air

Mise en œuvre de joints d'étanchéité (4)

Travaux de correction du pont thermique

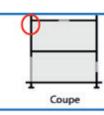
Mise en œuvre d'un complément d'isolation (en Laine Minérale ; $\lambda \le 0.042$ W/m.K) (3).

Caractéristiques thermiques

Ψ (W/(m.K))

0.30

Valable pour :

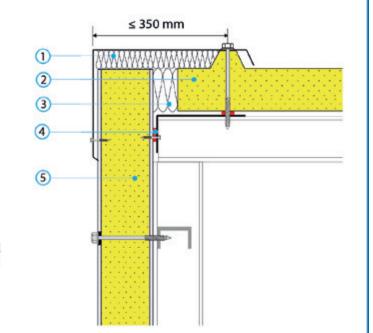

- panneaux de bardage ≥ 80 mm.
- panneaux de couverture ≥ 80 mm.
- conductivité thermique de l'isolant des

panneaux : 0.023 à 0.031 W/(m.K)

Ces préconisations sont valables pour des locaux à faible ou moyenne hygrométrie

Liaison bardage / couverture: Cas 3

Désignation


- 1. Complément d'isolation
- 2. Panneau sandwich de couverture
- 3. Complément d'isolation
- 4. Joint d'étanchéité
- 5. Panneau sandwich de bardage

Travaux d'étanchéité à l'air

Mise en œuvre de joints d'étanchéité (4)

Travaux de correction du pont thermique

Mise en œuvre de deux compléments d'isolation (en Laine Minérale ; $\lambda \le 0.042$ W/m.K) (1 et 3).

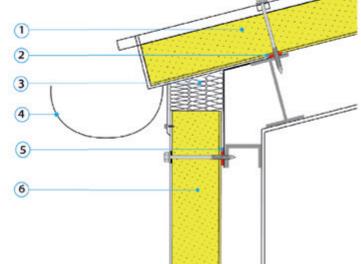
Caractéristiques thermiques

Ψ (W/(m.K))

0.05

Valable pour:

- panneaux de bardage ≥ 80 mm.
- panneaux de couverture ≥ 80 mm.
- conductivité thermique de l'isolant des panneaux : 0.023 à 0.031 W/(m.K)


Ces préconisations sont valables pour des locaux à faible ou moyenne hygrométrie

Liaison bardage / couverture: Cas 4

Désignation

- Panneau sandwich de couverture
- 2. Joint d'étanchéité
- 3. Complément d'isolation
- 4. Gouttière
- 5. Joint d'étanchéité
- 6. Panneau sandwich de bardage

Travaux d'étanchéité à l'air

Mise en œuvre de joints d'étanchéité (2 + 5).

Travaux de correction du pont thermique

Mise en œuvre d'un complément d'isolation (en Laine Minérale ; $\lambda \le 0.042 \text{ W/m.K}$) (3).

Caractéristiques thermiques

Ψ (W/(m.K))

0.55

Valable pour :

- panneaux de bardage ≥ 80 mm.
- panneaux de couverture ≥ 80 mm.
- conductivité thermique de l'isolant des panneaux : 0.023 à 0.031 W/(m.K)

Ces préconisations sont valables pour des locaux à faible ou moyenne hygrométrie

Coupe

≥120 mm

Liaison faîtage simple:

(1)

(2)

(3)

Désignation

- 1. Bandeau de faîtage à saillie
- 2. Panneau sandwich de couverture
- 3. Complément d'isolation
- Cornière
- Joint d'étanchéité
- 6. Panneau sandwich de bardage

Travaux d'étanchéité à l'air

Mise en œuvre de joints d'étanchéité (5)

Travaux de correction du pont thermique

Mise en œuvre d'un complément d'isolation (en Laine Minérale ; $\lambda \le 0.042$ W/m.K) (3).

Caractéristiques thermiques

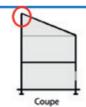
Ψ (W/(m.K)) 0.10

Valable pour :

- panneaux de bardage ≥ 80 mm.
- panneaux de couverture ≥ 80 mm.
- conductivité thermique de l'isolant des panneaux : 0.023 à 0.031 W/(m.K)

Ces préconisations sont valables pour des locaux à faible ou moyenne hygrométrie

PRO STATE OF BOOK OF THE PROPERTY OF THE PROPE


Liaison faîtage contre mur

(2)

(3)

4

(5)

Désignation

- Panneau sandwich de bardage
- 2. Profilé U
- 3. Complément d'isolation
- 4. Panneau sandwich de couverture
- 5. Joint d'étanchéité

Mise en œuvre de joints d'étanchéité (5)

Travaux de correction du pont thermique

Mise en œuvre d'un complément d'isolation (en Laine Minérale ; $\lambda \le 0.042$ W/m.K) (3).

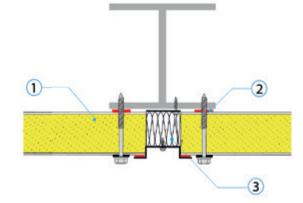
Caractéristiques thermiques

Ψ (W/(m.K))

0.45

Valable pour :

- panneaux de bardage ≥ 80 mm.
- panneaux de couverture ≥ 80 mm.
- conductivité thermique de l'isolant des panneaux : 0.023 à 0.031 W/(m.K)


Ces préconisations sont valables pour des locaux à faible ou moyenne hygrométrie

SENCE ON THE PARTY OF THE PARTY

Pose horizontale - jonction verticale entre panneaux

Désignation

- Panneau sandwich de bardage
- 2. Joint d'étanchéité
- Complément d'isolation

Travaux d'étanchéité à l'air

Mise en œuvre de joints d'étanchéité (2).

Travaux de correction du pont thermique

Mise en œuvre d'un complément d'isolation entre les panneaux (en Laine Minérale ; $\lambda \le 0.042$ W/m.K) (3)

Caractéristiques thermiques

 $\Psi (W/(m.K))$

0.05

Valable pour:

- panneaux de bardage ≥ 80 mm.
- conductivité thermique de l'isolant des panneaux : 0.023 à 0.031 W/(m.K).

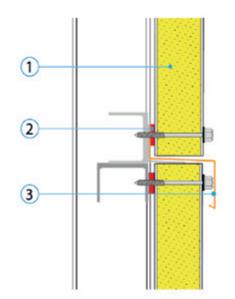
A . 0.025 a 0.051 W/(m.K)

Ces préconisations sont valables pour des locaux à faible ou moyenne hygrométrie

PROG

Pose verticale – jonction horizontale entre panneaux : Cas 1

Désignation


- 1. Panneau sandwich de bardage
- 2. Joint d'étanchéité
- 3. Bavette

Travaux d'étanchéité à l'air

Mise en œuvre de joints d'étanchéité (2).

Travaux de correction du pont thermique

Pas de travaux.

Caractéristiques thermiques

Ψ (W/(m.K))

1.00

Valable pour :

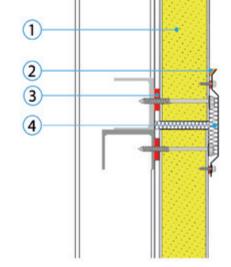
- panneaux de bardage ≥ 80 mm.
- conductivité thermique de l'isolant des

panneaux : 0.023 à 0.031 W/(m.K).

Ces préconisations sont valables pour des locaux à faible ou moyenne hygrométrie

Pose verticale – jonction horizontale entre panneaux : Cas 2

Désignation


- Panneau sandwich de bardage
- 2. Joint silicone
- 3. Joint d'étanchéité
- Complément d'isolation en LM

Travaux d'étanchéité à l'air

Mise en œuvre de joints d'étanchéité (3).

Travaux de correction du pont thermique

Mise en œuvre d'un complément d'isolation (en Laine Minérale ; $\lambda \le 0.042$ W/m.K) (4).

Caractéristiques thermiques

Ψ (W/(m.K))

0.03

Valable pour:

- panneaux de bardage ≥ 80 mm.
- conductivité thermique de l'isolant des

panneaux : 0.023 à 0.031 W/(m.K).

Ces préconisations sont valables pour des locaux à faible ou moyenne hygrométrie

Acoustique et enveloppe du bâtiment dans le développement durable

Frédéric Marchetti Expert acoustique et thermique Assistance Technique Clientèle Arval ArcelorMittal Construction France

Quel est le lien entre acoustique et développement durable ?

Frédéric Marchetti : Le bruit est une nuisance qui se retrouve dans l'ensemble des lieux de vie : habitat, travail, transports ou loisirs. Des réglementations existent depuis longtemps qui tendent à fixer des niveaux minima. La dernière en date est la NRA de 1994 qui a fait l'objet d'une révision en 1999. Mais le confort et la santé font partie des préoccupations majeures du développement durable et, dans ce cadre le bruit a fait partie des thèmes du Grenelle de l'Environnement. Une table-ronde lui a été consacrée (qualité de l'air et acoustique) et des financements devraient être débloqués surtout pour régler le bruit produit par les infrastructures de transports.

De façon cohérente, le traitement du bruit, pour le bâtiment, est considéré dans un cadre global avec l'isolation thermique.

Par ailleurs, le confort acoustique fait l'objet d'une considération particulière du référentiel et de la certification HQE au travers de sa cible 9. Dans ce cas, il s'agit de créer un environnement acoustique intérieur satisfaisant.

Parmi les nouveautés apportées par le Grenelle, au-delà de la possibilité de renforcer encore les exigences (un point sur lesquels tous les professionnels ne sont pas d'accord) il est envisagé (article 6) la création d'un programme visant à établir une filière de rénovateurs de bâtiment associant les compétences nécessaire à la rénovation thermique et à la rénovation de la qualité acoustique. Elle permettrait l'application d'une éventuelle obligation d'amélioration (ou a minima de maintien) du niveau du confort acoustique existant en cas de rénovation.

Par quelles exigences traduit-on la qualité acoustique ?

FM: Paradoxalement, on pourrait dire que l'acoustique se repère par le bruit ou son absence. Le bruit est un phénomène très particulier. Nous ne pouvons pas vivre sans mais il n'en faut pas trop, le même bruit peut être agréable à certains moments et tout à fait insupportable à certaines heures de la journée. C'est pourquoi, en fonction des exigences liées aux situations et aux locaux, on opérera des corrections acoustiques ou un isolement acoustique.

L'isolement acoustique fonctionne dans les deux sens : il permet de ne pas gêner le voisinage et de ne pas être gêné par l'environnement extérieur. La correction acoustique permet de maitriser la propagation sonore à l'intérieur d'un local en limitant le phénomène d'écho, améliorant de ce fait la qualité d'écoute et le confort à l'intérieur du local.

Téléchargez PROFILINFO

sur www.snppa.fr

Quels sont les constructions concernées ?

FM : Toutes : bâtiments industriels, bureaux, logement, salle polyvalente, gymnase, piscine, bâtiments scolaires, hôtels, établissements de santé, etc. Dans certains cas, ce sont des locaux qui émettent du bruit (comme les bâtiments industriels), dans d'autres des locaux qu'il faut protéger du bruit.

Quels sont les types de bruits concernés et comment les caractérisent-on?

FM: La transmission du bruit se fait soit par l'air (bruit aérien) soit par des solides (bruit de chocs, on parle aussi de transmission solidienne). L'unité de mesure est le dB (décibel) et une correction appelée pondération A est appliquée sur les spectres de bruit afin de tenir compte de la sensibilité de l'oreille humaine moins sensible dans les basses fréquences (graves) qu'aux moyennes et hautes fréquences (aigües). Si chaque oreille perçoit différemment les sons, on classe les bruits en fonction de leur niveau: ils deviennent gênants autour de 50 dB, nocifs vers 95 dB, dangereux vers 105 et douloureux à 120.

En construction, on utilise des données spécifiques aux matériaux et aux ouvrages. Ainsi, chaque paroi (mur, toiture, plancher, etc.) est caractérisée par son indice d'affaiblissement acoustique $R_{\rm w}$ (C ou Ctr selon la nature du bruit) en dB. Cet indice est mesuré en laboratoire et plus R (exprimé en dB) est élevé plus la paroi limite la transmission du bruit. C'est ainsi qu'est repérée la performance du produit. La performance de l'ouvrage est traduite par un isolement Dn (dB) mesuré in situ, qui dépendra de l' indice d'affaiblissement acoustique des parois et des transmissions latérales. Dans les réglementations, l'isolement minimum exigé est noté DnT.

On utilise aussi l'absorption acoustique, notée α_w (sans unité), pour caractériser les revêtements ou complexes absorbants ou les parois (mur, plancher, toiture, etc.), c'est-à-dire qui limite plus ou moins le phénomène d'écho. Dans ce cas, on ne considère que l'intérieur du local. Ce coefficient est mesuré en laboratoire, plus α est proche de 1 plus la paroi est dite absorbante, meilleure est donc la performance du produit.

Enfin, un niveau de bruit de choc, noté Ln_w , permet de définir les performances des planchers face à ce type de phénomène.

Quelles sont les réglementations applicables aujourd'hui et les performances exigibles ?

FM: Il existe toute une série de textes en fonctions des situations mais, globalement, si on distingue entre les bruits aériens et les bruits de chocs, on obtient les niveaux suivants:

- Isolement aux bruits aériens intérieurs : les réglementations imposent un isolement minimum DnTA en dB, qui varie selon la destination des bâtiments et la nature des locaux (performance de l'ouvrage);
- Isolement aux bruits aériens vis-à-vis de l'extérieur: les réglementations imposent un isolement minimum DnTATr de 30 dB en général, sauf pour les bâtiments proches de certaines infrastructures de transport, aéroportuaire ou industrielle (performance de l'ouvrage);
- Bruit de choc: les réglementations imposent un niveau de pression du bruit de choc, l'nT_w inférieur à 58 dB entre logement dans les bâtiments résidentiels et tertiaires et inférieur à 53 dB pour le label Qualitel Confort Acoustique (performance de l'ouvrage).

En ce qui concerne la correction acoustique des locaux, les réglementations imposent une aire d'absorption équivalente minimum pour les halls, les circulations communes etc., ou un temps de réverbération minimum dans les ateliers, usines, salles sportives, etc. (performance de l'ouvrage).

Quelles solutions sont apportées par l'enveloppe acier pour répondre à ces exigences?

FM : Le système masse+ressort+masse, on le sait, est le plus performant dans le domaine acoustique pour assurer un excellent isolement par rapport aux bruits émis de l'extérieur vers l'intérieur ou vice et versa. C'est ce principe qui est appliqué dans les systèmes double peau permettant ainsi d'atteindre des indices d'affaiblissement acoustique de l'ordre de 30 à 55 dB.

Avec des systèmes de panneaux sandwiches, les indices d'affaiblissement acoustiques R_{W} en dB obtenus varient en fonction des types : pour les panneaux à âme PU et à parements acier 25 dB et pour les panneaux à âme laine de roche et à parements acier 30 dB.

Avec les planchers collaborants on monte à des valeurs comprises entre 45 et 60 dB qui peuvent être encore améliorées par des plafonds rapportés en sous face avec interposition d'un matelas en laine minérale. Tandis que l'utilisation de souscouches résilientes et de revêtements de sols auront un effet bénéfique sur l'amélioration de l'affaiblissement des bruits d'impacts.

Côté absorption acoustique, des perforations appliquées sur les supports d'étanchéité ou les plateaux permettent d'obtenir de bons coefficients sur les parois de toiture et bardage, ce qui permet de réduire le temps de réverbération à l'intérieur du local car avec une forte atténuation du phénomène d'écho, on renforce le confort intérieur au local. Voici quelques chiffres en fonction de produits : pour les double peaux avec profils en acier perforés, α_w^- atteint 0,95, un panneau âme polyuréthanne avec parement acier perforé $\alpha_w = 0,50$ et un panneau âme laine de roche avec parement perforé $\alpha_w = 0,95$.